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Motivations

A general development of statistical theory

Statistical theory X Θ Dating to
Classical parametric inf. R θ ⊂ R 1920s
Multivariate analysis Rp (n >> p) θ ⊂ Rk (n >> k) 1940s
Nonparametrics Rp (n >> p) A function space 1960s
High dimensional problems Rp (n < p) θ ⊂ Rk 2000s
Functional Data Analysis A function space Rk or a function space 1990s

Antonio Cuevas (2014)

▶ sound and images
▶ natural language
▶ imprecise data
▶ . . .
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Example

The Gamonedo cheese is a kind of a blue cheese produced in Asturias.
In quality control experts (tasters) express their perceptions about
▶ visual parameters (shape, rind, appearance),
▶ texture parameters (hardness and crumbliness),
▶ olfactory-gustatory parameters (smell intensity, smell quality,

flavour intensity, flavour quality and aftertaste),
▶ an overall impression of the cheese.

(Gonzalez de Llano D., et al., 1992)
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Imprecise data modeling

Example (cont.)
So far, the experts provide an ordinal number ranging from 1 to 7 to
describe their perceptions about different cheese characteristics. Recently
some of the tasters were proposed to express their subjective perceptions
about the quality of the Gamonedo cheese by using fuzzy numbers.

Opinion of a taster given by means of a trapezoidal fuzzy set

(Ramos-Guajardo A.B., et al., 2019)
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Fuzzy data in statistical context

A fuzzy subset A of the real line R with a membership function
µ : R → [0, 1] is a fuzzy number if it satisfies the following properties:
(1) A is normal (i.e. ∃x0 ∈ R such that µA(x0) = 1),
(2) A is fuzzy convex (i.e. µ(λx1 + (1− λ)x2) ⩾ min{µ(x1), µ(x2)}

for any x1, x2 ∈ R and any λ ∈ [0, 1],
(3) µ is upper semicontinuous,
(4) the support of A, i.e. supp(A) = cl{x ∈ R : µ(x) > 0} is bounded

(where cl stands for the closure operator).

Each fuzzy number has two equivalent representations: the so-called
LR-representation and LU- representation.
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LR-representation

The membership function µ of a fuzzy number A can be represented in
the following form

µ(x) =


L
(
b−x
b−a

)
if a < x ⩽ b,

1 if b ⩽ x ⩽ c,

R
(
x−c
d−c

)
if c ⩽ x < d,

0 otherwise,

where L,R : R → [0, 1] denote decreasing functions such that
L(0) = R(0) = 1, L(1) = R(1) = 0, L(x), R(x) < 1, ∀x > 0
and L(x), R(x) > 0, ∀x < 1.

Hence, A can be specified completely by its core (i.e. core(X) = [b, c]),
support (i.e. supp(X) = [a, d]), and functions L, R, called the left and
right shape functions (sides), respectively.



LU-representation

A fuzzy number A with the membership function µ is completely
characterized a family of its α-cuts {Aα}α∈[0,1] defined as follows

Aα =

{
{x ∈ R : µ(x) ⩾ α} if α ∈ (0, 1],

cl{x ∈ R : µ(x) > 0} if α = 0.

Thus each α-cut of a fuzzy number A is a nonempty compact interval
Aα = [AL

α, A
U
α ], where AL

α = inf Aα and AU
α = supAα.

Alternatively, each α-cut can be represented by its midpoint and radius
given by

midAα =
AL

α +AU
α

2
, sprAα =

AU
α −AL

α

2
,

instead of its endpoints.
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Arithmetic in F(R)

(
A+B

)
α
=

[
inf Aα + inf Bα, supAα + supBα

]
, ∀α ∈ [0, 1]

1 A B

α

Aα Bα
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A+B
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(
θ ·A

)
α
=

{[
θ inf Aα, θ supAα

]
if θ > 0[

θ supAα, θ inf Aα

]
if θ < 0

, ∀α ∈ [0, 1]

1 A

α

Aα



(
θ ·A

)
α
=

{[
θ inf Aα, θ supAα

]
if θ > 0[

θ supAα, θ inf Aα

]
if θ < 0

, ∀α ∈ [0, 1]

1 A

α

Aα

−1.5 · A

(−1.5 · A)α



Note (F(R),+, ·) has not linear but semilinear structure since
A+ (−1 ·A) ̸= 1{0}.

A−1 · A
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Moreover, the Minkowski difference does not satisfy, in general, the
addition/subtraction property that (A+ (−1)B) +B = A.
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To overcome this problem the Hukuhara difference was proposed

C := A−Hu B if and only if B + C = A

Although now the desired properties A−Hu A = 1{0} is satisfied, the
Hukuhara difference does not always exist.

Remark
There is no such difference in F(R) that
▶ (A−B) +B = A is satisfied ∀A,B ∈ F(R),
▶ the operation is well-defined ∀A,B ∈ F(R).

Remark
Similar problems arise in the case of division.
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Let λ denote a normalized measure associated with a continuous
distribution with support in [0, 1] and let θ > 0. Then for any
A,B ∈ F(R) we define a metric Dλ

γ as follows

Dλ
γ (A,B)=

 1∫
0

[
(midAα−midBα)

2 + γ(sprAα−sprBα)
2
]
dλ(α)

1/2

(Gil et al., 2002; Trutschnig et al., 2009)

Typical choices:
γ = 1 or γ = 1

3 ; λ = ℓ = the Lebesgue measure on [0, 1].

(F(R), Dλ
γ ) is a separable metric space and for each fixed λ all metrics

Dλ
γ are topologically equivalent.



Fuzzy random variables

Fuzzy random variables (random fuzzy numbers) integrate randomness
(associated with data generation) and fuzziness (associated with data
nature).

Definition (Puri M.L., Ralescu D., 1986)
Let (Ω,A, P ) be a probability space. A mapping X : Ω → F(R) is a
fuzzy random variable (random fuzzy number) if for all α ∈ [0, 1]
the α-level function is a compact random interval.

In other words, X is a fuzzy random variable if and only if X is a Borel
measurable function w.r.t. the Borel σ-field generated by the topology
induced by Dλ

γ .
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Note
In contrast to the statistical analysis of numerical data one should be
aware of the following problems typical for fuzzy data:

▶ problems with subtraction and division of fuzzy numbers;

▶ the lack of universally accepted total ranking between fuzzy
numbers;

▶ there are not yet realistic suitable models for the distribution of
random fuzzy numbers;

▶ there are not yet Central Limit Theorems for random fuzzy
numbers that can be directly applied for making inference.

Conclusion
No straightforward generalizations of the classical
parametric/nonparametric statistical tests for fuzzy data exist.
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A few words on FDA

Functional Data Analysis (FDA) – all theoretical methods and
practice relating to situations when the available data are not real
numbers or vectors but functions.

Thus, FDA usually refers to statistical problems where the available data
consists of a sample of functions x = (x1, . . . , xn), where xi = xi(t), for
each i = 1, . . . , n, is defined on a compact interval of the real line, e.g.
on [0, 1].

Ramsay J.O., Silverman B.W., Functional Data Analysis, Springer, 2005.
Cuevas A., A partial overview of the theory of statistics with functional data, Journal
of Statistical Planning and Inference, 147 (2014), 1–23.
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We assume that the sample space X is a real separable Banach space
with some norm || · ||. Therefore, our sample data are observations
drawn from an X -valued random element X (i.e. a measurable function)
defined on some probability space (Ω,A,P).

Separability ensures that a linear combination of X -valued random
elements is again a random element.

Very often a structure of (separable) Hilbert space, with associated inner
product ⟨ , ⟩, is needed for X .

Two standard choices for the sample space X are C[0, 1], the Banach
space of real continuous functions x : [0, 1] → R endowed with the
supremum norm || · || = supt |x(t)|, and the Hilbert space L2[0, 1] of
square integrable real functions on [0, 1] endowed with the usual inner
product ⟨x, y⟩ =

∫ 1
0 x(t)y(t) dt.



Can fuzzy data be treated as special functional data?

“DIRECTLY, NO: In applying functional arithmetic to handle
elements in the space of (functional-valued) fuzzy numbers, one often
moves out of the space, and the fuzzy meaning is generally lost”.

Maria Angeles Gil, SMPS 2018 Tutorial: Random fuzzy sets and statistics with
imprecise-valued data
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“INDIRECTLY, YES: By using appropriate arithmetic and suitable
metrics, fuzzy numbers can be identified with elements in a convex cone
of a Hilbert space of functions and the arithmetic and metrics with fuzzy
numbers with those in the Hilbert space of functions”.

Maria Angeles Gil, SMPS 2018 Tutorial: Random fuzzy sets and statistics with
imprecise-valued data

González-Rodríguez G., Colubi A., Gil M.A., Fuzzy data treated as functional data.
A one-way ANOVA test approach, Comp. Stat. Data Anal. 56 (2012), 943–955.



How can we apply FDA methods for fuzzy data?

Firstly, we need a useful representation of fuzzy numbers.

Then we can try FDA with FNs.
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ICr functions

Denoted by F(R) the space of all continuous fuzzy numbers, i.e. fuzzy
numbers with continuous membership functions.

Let us extend the sides L and R of A ∈ F(R) to the real domain as
follows

Lext(x) =


0 if a < x,

L
(
b−x
b−a

)
if a ⩽ x < b,

1 if b ⩽ x

Rext(x) =


1 if x ⩽ c,

R
(
x−c
d−c

)
if c < x ⩽ d,

0 if d < x.

Obviously, µ(x) = Lext(x)−
[
1−Rext(x)

]
∀x ∈ R.



ICr functions

Denoted by F(R) the space of all continuous fuzzy numbers, i.e. fuzzy
numbers with continuous membership functions.

Let us extend the sides L and R of A ∈ F(R) to the real domain as
follows

Lext(x) =


0 if a < x,

L
(
b−x
b−a

)
if a ⩽ x < b,

1 if b ⩽ x

Rext(x) =


1 if x ⩽ c,

R
(
x−c
d−c

)
if c < x ⩽ d,

0 if d < x.

Obviously, µ(x) = Lext(x)−
[
1−Rext(x)

]
∀x ∈ R.



ICr functions

Denoted by F(R) the space of all continuous fuzzy numbers, i.e. fuzzy
numbers with continuous membership functions.

Let us extend the sides L and R of A ∈ F(R) to the real domain as
follows

Lext(x) =


0 if a < x,

L
(
b−x
b−a

)
if a ⩽ x < b,

1 if b ⩽ x

Rext(x) =


1 if x ⩽ c,

R
(
x−c
d−c

)
if c < x ⩽ d,

0 if d < x.

Obviously, µ(x) = Lext(x)−
[
1−Rext(x)

]
∀x ∈ R.



Definition (Liu, 2007)
The credibility distribution of A ∈ F(R) is a function Υ : R → [0, 1]
defined by

Υ(x) =
1

2

(
Lext(x) +

[
1−Rext(x)

])
, ∀x ∈ R.













Note
Liu (2007) defined the credibility distribution as the average of the
possibility and necessity functions, i.e.

Υ(x) =
1

2

(
Pos(x) + Nec(x)

)
,

where

Pos(x) = sup
t⩽x

µ(t) = Lext(x),

Nec(x) = 1− sup
t>x

µ(t) = 1−Rext(x).

Stefanini and Guerra (2017) considered the so-called λ-Average
Cumulative Function (where λ ∈ [0, 1]) defined as follows

Ψ(λ)(x) = (1− λ)Lext(x) + λ
[
1−Rext(x)

]
.
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Let Fr(R) denote a family of regular continuous fuzzy numbers,
i.e. fuzzy numbers with continuous membership functions having
single-element cores.

Theorem
A ∈ Fr(R) if and only if its credibility distribution Υ(x) is strictly
increasing on {x ∈ R : 0 < Υ(x) < 1}.
Moreover, A ∈ Fr(R) if and only if it has a unique inverse credibility
distribution (abbreviated as ICr function)

υ(α) := Υ−1(α)

and υ(α) is continuous and strictly increasing for α ∈ [0, 1].
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FDA in hypothesis testing with fuzzy data

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) denote independent
samples of i.i.d. random fuzzy numbers. We want to verify{

H0 : X
d
= Y,

H1 : ¬H0.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) denote the experimental
realizations of two independent random fuzzy samples, i.e. xi ∈ Fr(R)
∀i = 1, . . . , n and yj ∈ Fr(R) ∀j = 1, . . . ,m.

Firstly, we construct a credibility distribution for each observation, i.e.(
Υx1(t), . . . ,Υxn(t)

)
and

(
Υy1(t), . . . ,Υym(t)

)
, t ∈ R.

Then, we determine the ICr functions for both samples, i.e.
υx =

(
υx1(α), . . . , υxn(α)

)
and υy =

(
υy1(α), . . . , υym(α)

)
, α ∈ [0, 1],

where υxi(α) := Υ−1
xi

(α) and υyj (α) := Υ−1
yj (α).
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Consider the following test statistic for the given experimental data

T (α) = T (υx, υy;α) =
|υx(α)− υy(α)|√
1
ns

2
x(α) +

1
ms2y(α)

, α ∈ [0, 1],

where

υx(α) =
1

n

n∑
i=1

υxi(α), s2x(α) =
1

n− 1

n∑
i=1

[
υxi(α)− υx(α)

]2
,

υy(α) =
1

m

m∑
j=1

υyj (α), s2y(α) =
1

m− 1

m∑
j=1

[
υyj (α)− υy(α)

]2
,

and let
t0 = sup

α∈[0,1]
T (α).



Now, starting from the initial dataset we will design a specific
permutation procedure.

Let w := υx ⊎ υy, where ⊎ stands for vector concatenation pooling
the two samples into one, i.e.

wi = υxi if 1 ⩽ i ⩽ n and wi = υyi−n if n+ 1 ⩽ i ⩽ N.

Let w∗ denote a permutation of the initial dataset w.

Suppose, we take first n elements of w∗ and assign them to sample υ∗x,
while the remaining m elements create the second sample υ∗y .

Thus, it works like a random assignment of N = n+m elements into
two samples of the size n and m, respectively.
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Next we calculate the corresponding value of the test statistic
for υ∗x =

(
υ∗x1

, . . . , υ∗xn

)
and υ∗y =

(
υy1 ,

∗ . . . , υ∗ym
)
, i.e.

t∗ = sup
α∈[0,1]

T (υ∗x, υ
∗
y ;α) = sup

α∈[0,1]

|υ∗x(α)− υ∗y(α)|√
1
ns

2
x∗(α) + 1

ms2y∗(α)
.

By repeating the whole procedure B times we obtain test statistic values
t∗b , for b = 1, . . . , B permutations, to determine the approximate p-value

p-value =
1

B

B∑
b=1

1
(
t∗b ⩾ t0

)
,

where t0 is the test statistic value received for the original samples.



Other interesting tests:

▶ two-sample test based on

T (υx, υy) =

∫ 1

0

(
υx(α)− υy(α)

)2
dα

▶ k-sample test based on

T̃ =

k∑
i=1

T (υxi , υw),

where w := υx1 ⊎ . . . ⊎ υxk

▶ two-sample test based on the modified band depth



Example (cont.)

We consider some data given in Ramos-Guajardo A.B. et al.(2019) to
compare the opinions of the three experts about the overall impression of
the Gamonedo cheese. We have three independent fuzzy samples of sizes
n1 = 40, n2 = 38 and n3 = 42, coming from the unknown distributions.

Opinion Expert 1 Expert 2 Expert 3

1 (65, 75, 85, 85) (50, 50, 63, 75) (60, 63, 67, 72)

2 (35, 37, 44, 50) (39, 47, 52, 60) (53, 58, 63, 68)

3 (66, 70, 75, 80) (60, 70, 85, 90) (43, 47, 54, 58)

4 (70, 74, 80, 84) (50, 56, 64, 74) (70, 76, 83, 86)

5 (65, 70, 75, 80) (39, 45, 53, 57) (54, 60, 65, 70)
...

...
...

...



Empirical null distribution of the permutation test with red vertical line
indicating the test statistic value for experts 1 vs. 2; 1 vs. 3 and 2 vs. 3.



Conclusions and further research

▶ Due to certain difficulties with fuzzy modeling, statistical tools
for reasoning with imprecise data usually cannot be generalized
straightforwardly from their classical prototypes.

▶ Some of those difficulties might be solved by applying another
representation of fuzzy numbers, like the credibility distribution and
its inverse function (ICr).

▶ It seems that ICr functions open wide prospects for the use of FDA
methods in the analysis of fuzzy data.
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