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0 Multiple imputation and Rubin’s estimator



Imputation estimators
X=(Xi,...,Xp) - the sample:
@ Xp = (X, i € R) - observed part of X,
@ Xge = (X}, i € R®) - missing part of X.

Missing values are replaced by imputed: Xi, i € RS, i.e.the
imputed sample X = (Xj, ..., Xp) is defined through

X_:{x, ifi € R,

X; (imputed), if i e RC.

Let § := h(x) be an estimator of parameter 6. Its imputation

version is _
Oimp = h(X).

The imputation version of X and S?:

n n
)_(Imp = 15 Z Xi, SIzmp = ﬁ Z (X, - lep)2'
i=1 i=1



Multiple imputation (Ml) estimators

Multiple imputation:
@ imputed samples

XO=(X,ieR X9 icR), (=1,....m,
@ respective estimators

00 — p (y((e)) S X9

Imp Imp>

(S(Z)

mp) s £=1,...,m.

MImp estimators

m m )
WREER o [ VSR o3 ((
QMImp ~m QImp7 XMImp —m Tmp*

=1 =1



Rubin’s estimator of the variance of Xy
The popular Rubin estimator of the variance of )_(Mlmp is
where

and



Over-optimistic...?
Let (Xg, Xpe) be an iid sample with mean 1 and variance o2.

Hot-deck imputation: X = X, (), j € R°, where K*) are iid
i

uniformon R, ¢ =1,...,m,j € R°,

Then
XMImp = fXR + mi

wms
><

©
K/

jER
is unbiased for ;1 and Var(Xyimp) = % ( + {=00=T) )

But

IB%(Vl%ubin) =E Vl%ubin - Var()_(MImp) == (1_0[”(77(_(’,’1_11)):—2(”_1)] <0.




Over-optimistic...?
Let (Xg, Xge) be a sample from N(p, 02).

Hot-deck imputation: )N(j(e) = Xg + SRZj(Z), where Xg and S are

the sample (Xg) mean and variance and Zj(z), £=1,....m
j € RC, are iid N(0, 1) and are independent of Xg.

Then

XMImp = Xg + SR Z E Z(e
¢=1 jeRe

is unbiased and Var(Xump) = % (1 4 0= f)f)

But

_ o2(1—f
IBg(ygubin) =K Vl%ubin — Var(XMImp) — o= )I[’l((rll 11))(n r—1] <0.



Deficiencies of Rubin’s estimator

In both cases:

B(v2,1n) N—0
Rubin 3 _1 .
Var(Xvimp)



Deficiencies of Rubin’s estimator

In both cases:
IB(Vlgubin) nif _1
Var(Xvimp) '

. . AD .
Basic problems with g . :

Typically it is
@ BIASED
@ NON-ADMISSIBLE

We will discuss these issues in a relatively simple Bayesian
GmG-model: Gaussian variables with Gaussian mean.



e GmG model



GmG Bayesian model:

Let 4 € R, k,0 > 0. Then the GmG(u, 02, k) Bayesian model is
defined through:

XM ~ (N(M, o))",

M ~ N(u, ko?).
Then
XpelXp ~ N (58, 02(Ig, + 55181E)) . (1)

Non-informative prior: for Kk = co. Take k — oo in (1):

Xae|Xg ~ N ()‘(,q, o2(Ig, + 171,%1,50)) . )



Representation

Consequently, Xge has the representation

XRC:“;)I{?_J;#-IRC"FU(Z—F ﬁ\/'l,qo),

where r = #(R),
@ Z=(Z, i€ R° hasiid N(0, 1) components,
@ V~N(0,1),
@ (Z, V, Xg) independent.

3)



Assume o2 unknown. How to impute?

Approximate

0?m SF =1 ) (X — Xr)2.
keR

Impute missing X’s by

X = w4 4 Sp (20 4 [ VIO 1)

L=1,...,m.

Here, (2, v(9), ¢ =1,..., are independent copies of (Z, V).
In particular, (29, V()),_; ., and Xg are independent.

.....



The case of non-informative prior

The case of non-informative prior is by taking x — oo in (3).

Then B
Xpe :XR1RC+O'<Z+\% V1Rc>,

and thus impute missing X’s by

X\ = Xa1ge + Sp (Z(g) + % v 1,‘?0) ;



Theorem

Consider the GmG(p, o2, k) model. The multiple imputation

estimator of M has the form

)_(Mlmp = le,zi: )_(Fi’ + (1 - f) (,HMJH + SF{ﬂ) )
where f = Land W = LS°T" . WO with

(0 _ 1 (£) K
WO = ot 5 20+ | [
ieRe

Xoiimp iS Ubiased for M, i.e. E Xymp = E M, and

r

MSE )_(Mlmp =E ()_(Mlmp - M)2 = (mﬁ_f + %) =

nk—+1

2 _ nk+i1
where ¢ = T f.

)

(4)

()



Theorem (cont.)

Statistics By, and U, assume the form:
Bm=(1—1)? S5z,
Un = 1){32[ +(”*f*1)_§}

v 2
w1 0) (St = Sal) 4 42, B

where
o m ’ mo, 2
SZ — % Z Sz(g) and Szﬂ/ == %1 Z (W(Z) —ﬂ)
=1 =1
Moreover,




Theorem (cont.)
Rubin’s estimator v2,,;, of MSE(Xyiimp) is biased with the bias

2 2 X 2(1—f) 7242
B VRubin = EVRub - MSE(XMImp) = l§n+1) T ;7 )

The relative bias of Rubin’s estimator has the form

Bugiin  _ 2(1-f) 2(1-1) (6)
MSE (Xnmimp ) Hn+f+1ﬁ(1_f)(nn+1) K N+f




Theorem (cont.)
For non-informative prior, i.e. when k — oo

e MSE()_(MImp) =E ()_(Mlmp — M)z — 072 (1 + 17;71’>,

® Rubin’s estimator, 12 ;.. is unbiased for MSE(Xyiimp)-



e The Rubin-type family of estimators



The Rubin-type family

Recall

m
= L5702 and Ba= 5t Y (X)) — Xatimp)2.

m
=1 =1

We introduce the Rubin-type family of estimators of the
MSE(XMImp):

R = {Vz(oz,ﬁ) — aUn + B, a,fB € R} .



Examples

@ Rubin’s estimator:
2 2
PRubin = V4 mi1 € R,

i.e. it is Rubin-type with a = 1 and g = 21
@ Bjgrnstad’s estimator:

2 _ .2
VBjornstad = V17%(+11:f; €N,

m+1—f =0 m41
mi-f 7 m

i.e. it is Rubin-type with « =1 and g =



Towards optimal weights

We search for the optimal estimator of the MSE of Xyim within
the family R, i.e. we serach for optimal weights («, 3).

The result is elementary but the formulas are complicated.



Monster constants

We need to introduce three + four constants

_ _r , 2(1—7?)(4—2n+(r—2-E)(147?))
=1+ + (r+1)(n—1)2m ’

(n 1)2m

4
=02 ma
b - f2 m—1°?

_ r(1=1) 272 2(r2—1)
C=—7 1+ 567 T o=

_ 2(2-1) )2
Air=agt - (1 + m(n 1) + (r+1)(n—1)> )
1 2

T 1—72

— m—1 "~ m(n—1) + (r+1)(n—1)>
1 2
- 3—nt(r—2- L) (1442
A3:Trnr+(1_7—2)<’r’,’+ ( r+1 ) )

Ay =724 0207 (4 _ 2)f,




Theorem
Let

2n(r—1) AA, 2(r—1) AsAy

O = ) A and B = Goapienaone A

Then VZ(%’ B+«) has the smallest MSE among the estimators of
the MSE(Xuimp) in the Rubin-type family R.

The optimal MSE is

MSE(v Z(O‘*a B))

:C;T: (I’+1)(a atﬁf b+2a.f. c) ZQ*AT} - 26* (= f)T al + f2




RMSE for optimal and Rubin estimators

g i Empirical RMSE of optimal estimator
o ?‘ —— Theoretical RMSE of optimal estimator
. +++++ Empirical RMSE of Rubin's estimator
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Figure: The RMSE of the optimal v?(a., 8.) estimator is smaller that
the RMSE of Rubin’s estimator. Here m =5, n= 100,02 =1, 4 =0
and x = 1. The empirical versions are computed from 100 repetitions.



Theorem (Non-informative prior)
Consider the case of k — oo, i.e. 7 = 1. Let

Qoo = MHEEIEIK and  Broo = — oK, ()

where

K — 2(r—1)(1+1=1)
m(nf1)(r+1)[(1+%)(1+%)*<1+ﬁ>1

Then v2(au o, B.00) IS the optimal estimator of MSE(Xymp) in
the family SR. Its MSE is

MSE (uz(a*,oo, ﬁ*,w))
-5 {1 )
a1+ i)

_ [204*7007‘—!-25*,00(1 —f)? - (1 + %fﬂ 1+f;;7f}'




Simplified quasi-optimal weights
Since

. 141=f . m—1)f(1+=f
lim oo =—52= and lim NBi . = —W
n—oo n—oo

if the sample size nis large and number of imputations m is
small one can use approximate values of o, o, and S, o:

~ 141t ~ (m=1)f(14+1=f
Qoo = —7 ANd fioo = == nm((1—f)m )
Since
lim oo =1 and lim NBioc = —
*,00 T f *,00 T 1_f
m—o00 m—o0

if both nand m are large one can use approximate values of
Q00 AN By oot



Relative RMSE wrt optimal estimator: m=5
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Figure: Simplified and approximate optimal estimators of the MSE
perform better than Rubin’s estimator. The computations were done

form=5,n=500,02 =1,k =00 (72 =1).



Relative RMSE wrt optimal estimator: large m
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Figure: Simplified and approximate optimal estimators of the MSE still
perform better than Rubin’s estimator. The computations were done
for m =100, n =500, 0% =1, k = 0o (12 = 1).



0 Unbiased Rubin-type estimators



Unbiased Rubin-type estimators

Rubin’s estimator is unbiased for MSE(Xymp), i-€-
przubin € i):{u = {V§75 €R: ]EVCZM,[? = MSE )_(M/mp}.

As it is shown below, 2 .. is non-admissible also in 9.

Theorem
Let
o =1 (1 i 1;{> (m(n—2)+1)(n—1) (8)
U f m ) m(n—1)2—(m—1)(n+r-2)
and
Boy = -1 (1 4 u) (r=1)(m—1) 9)
wU T —f m J m(n—1)2—(m—1)(n+r—2)"

Then v2(au.y, By,u) s optimal estimator of the MSE of the Xymp
in the class R,.

Simplified versions of v2(«. y, B..4) for large n and small/large
m are the same as for yz(a*m, Bi,00)-



MSE of Rubin’s estimator

Theorem
1 (m+1)(1-H]?
MSE(V&,) = % <[n + (m)f)] + A) 7 (10)
where

At | _N=r (m+1)2(1 — £)? (m+1)(1—f)}
_’”[n-?(n—1)2 m(m—1)r2 mrn(n—1) |’




Non-admissibility of Rubin’s estimator

Now we will compare MSE of the optimal unbiased estimator
v2(cu u, Bx,u) @and the Rubin estimator for m — oo in the case of
non-informative priors.

Theorem

For any response rate f € (0,1) and original sample size n

. 5 _ 204 1 B (r— 1)f
A MSE(v (0w, Bru)) = T2 [r 1 m®-3n-r+3]
(11)
and
. 2 254 1 1—f ?

Aim MSE(vay,) = 725 | o+ —— ) - (12)

Consequently,
L MSE( (e ufen) _ 1 [ (T 1)%f
rr'!lnoo MSE(szqub) o r |:1 n? — 3n—r+3 ' (13)



Standard deviation of optimal unbiased and Rubin's estimators

g | i Empirical SD of optimal unbiased estimator
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Figure: For non-informative prior Rubin’s estimator is not optimal
among unbiased estimators from the class R. The computations were
done for m =5, n =100, o = 1, x = 1000 and 100 repetitions for the
empirical standard deviation (SD).



Recommendation

To estimate the variance/MSE of )_(Mlmp, instead of Rubin’s

estimator, use



Recommendation

To estimate the variance/MSE of )_(Mlmp, instead of Rubin’s

estimator, use

—
= +Un — i=nBnm

THANK YOU!!!
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