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Imputation estimators
X = (X1, . . . ,Xn) - the sample:

XR = (Xi , i ∈ R) - observed part of X,
XRc = (Xi , i ∈ Rc) - missing part of X.

Missing values are replaced by imputed: X̃i , i ∈ Rc , i.e. the
imputed sample X̃ = (X̃1, . . . , X̃n) is defined through

X̃i =

{
Xi , if i ∈ R,

X̃i (imputed), if i ∈ Rc .

Let θ̂ := h(x) be an estimator of parameter θ. Its imputation
version is

θ̂Imp = h(X̃).

The imputation version of X̄ and S2:

X̄Imp = 1
n

n∑
i=1

X̃i , S2
Imp = 1

n−1

n∑
i=1

(X̃i − X̄Imp)
2.



Multiple imputation (MI) estimators

Multiple imputation:
imputed samples

X̃(ℓ) = (Xi , i ∈ R, X̃ (ℓ)
i , i ∈ Rc), ℓ = 1, . . . ,m,

respective estimators

θ̂
(ℓ)
Imp = h

(
X̃(ℓ)

)
, X̄ (ℓ)

Imp, (S(ℓ)
Imp)

2, ℓ = 1, . . . ,m.

MImp estimators

θ̂MImp = 1
m

m∑
ℓ=1

θ̂
(ℓ)
Imp, X̄MImp = 1

m

m∑
ℓ=1

X̄ (ℓ)
Imp.



Rubin’s estimator of the variance of X̄MImp

The popular Rubin estimator of the variance of X̄MImp is

ν̂2
Rubin = Ūm + m+1

m Bm,

where

Ūm = 1
mn

m∑
ℓ=1

(S(ℓ)
Imp)

2

and

Bm = 1
m−1

m∑
ℓ=1

(X̄ (ℓ)
Imp − X̄MImp)

2.



Over-optimistic...?

Let (XR, XRc ) be an iid sample with mean µ and variance σ2.

Hot-deck imputation: X̃ (ℓ)
j = X

K (ℓ)
j

, j ∈ Rc , where K (ℓ)
j are iid

uniform on R, ℓ = 1, . . . ,m, j ∈ Rc ,

Then

X̄MImp = f X̄R + 1
mn

m∑
ℓ=1

∑
j∈Rc

X
K (ℓ)

j

is unbiased for µ and Var(X̄MImp) =
σ2

r

(
1 + (1−f )(r−1)

mn

)
But

B(ν2
Rubin) = E ν2

Rubin − Var(X̄MImp) = − (1−f )[n(n−r+1)+2(r−1)]
n(n−1)r < 0.



Over-optimistic...?
Let (XR,XRc ) be a sample from N(µ, σ2).

Hot-deck imputation: X̃ (ℓ)
j = X̄R + SRZ (ℓ)

j , where X̄R and S2
R are

the sample (XR) mean and variance and Z (ℓ)
j , ℓ = 1, . . . ,m,

j ∈ Rc , are iid N(0,1) and are independent of XR.

Then

X̄MImp = X̄R + 1−f
mn SR

m∑
ℓ=1

∑
j∈Rc

Z (ℓ)
j

is unbiased and Var(X̄MImp) =
σ2

r

(
1 + (1−f )f

m

)
.

But

B(ν2
Rubin) = E ν2

Rubin − Var(X̄MImp) = − σ2(1−f )[(n−1)(n−r)−1]
n(n−1)r < 0.



Deficiencies of Rubin’s estimator

In both cases:
B(ν2

Rubin)

Var(X̄MImp)

n→∞−→ −1.

Basic problems with ν̂2
Rubin:

Typically it is
BIASED
NON-ADMISSIBLE

We will discuss these issues in a relatively simple Bayesian
GmG-model: Gaussian variables with Gaussian mean.
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GmG Bayesian model:

Let µ ∈ R, κ, σ > 0. Then the GmG(µ, σ2, κ) Bayesian model is
defined through:

X|M ∼
(

N(M, σ2)
)⊗n

,

M ∼ N(µ, κσ2).

Then

XRc |XR ∼ N
(

rκX̄R+µ
rκ+1 , σ2(IRc +

κ
rκ+11Rc 1T

Rc
)
)
. (1)

Non-informative prior: for κ = ∞. Take κ → ∞ in (1):

XRc |XR ∼ N
(

X̄R, σ
2(IRc +

1
r 1Rc 1T

Rc
)
)
. (2)



Representation

Consequently, XRc has the representation

XRc = κr X̄R+µ
κr+1 1Rc + σ

(
Z +

√
κ

κr+1 V 1Rc

)
, (3)

where r = #(R),
Z = (Zi , i ∈ Rc) has iid N(0,1) components,
V ∼ N(0,1),
(Z, V , XR) independent.



Assume σ2 unknown. How to impute?

Approximate

σ2 ≈ S2
R = 1

r−1

∑
k∈R

(Xk − X̄R)
2.

Impute missing X ’s by

X̃(ℓ)
Rc = κr X̄R+µ

κr+1 1Rc + SR

(
Z(ℓ) +

√
κ

κr+1V (ℓ) 1Rc

)
,

ℓ = 1, . . . ,m.

Here, (Z(ℓ), V (ℓ)), ℓ = 1, . . ., are independent copies of (Z,V ).
In particular, (Z(ℓ), V (ℓ))ℓ=1,...,m and XR are independent.



The case of non-informative prior

The case of non-informative prior is by taking κ → ∞ in (3).

Then
XRc = X̄R1Rc + σ

(
Z + 1√

r V 1Rc

)
,

and thus impute missing X ’s by

X̃(ℓ)
Rc = X̄R1Rc + SR

(
Z(ℓ) + 1√

r V (ℓ) 1Rc

)
,

ℓ = 1, . . . ,m.



Theorem

Consider the GmG(µ, σ2, κ) model. The multiple imputation
estimator of M has the form

X̄MImp = f κ n+1
κ r+1 X̄R + (1 − f )

(
µ

κ r+1 + SRW
)
, (4)

where f = r
n and W = 1

m
∑m

ℓ=1 W̄ (ℓ) with

W̄ (ℓ) = 1
n−r

∑
i∈Rc

Z (ℓ)
i +

√
κ

κ r+1V (ℓ).

X̄MImp is ubiased for M, i.e. E X̄MImp = EM, and

MSE X̄MImp = E
(
X̄MImp − M

)2
=
(

nκ+f
nκ+1 + 1−f

m

)
τ2σ2

r , (5)

where τ2 = nκ+1
rκ+1 f .



Theorem (cont.)

Statistics Bm and Ūm assume the form:

Bm =(1 − f )2 S2
R S2

W̄ ,

Ūm = 1
n(n−1)

{
S2

R

[
r − 1 + (n − r − 1)S̄2

Z

]
+r(1 − f )

(
X̄R−µ
rκ+1 − SRW

)2
+ r

1−f
m−1

m Bm

}
,

where

S̄2
Z = 1

m

m∑
ℓ=1

S2
Z (ℓ) and S2

W̄ = 1
m−1

m∑
ℓ=1

(
W̄ (ℓ) − W

)2
.

Moreover,

E Ūm = σ2

n , and EBm = (1 − f ) τ
2σ2

r .



Theorem (cont.)

Rubin’s estimator ν2
Rubin of MSE(X̄MImp) is biased with the bias

B ν2
Rubin = E ν2

Rub − MSE(X̄MImp) =
2(1−f )
κ n+1

τ2σ2

r .

The relative bias of Rubin’s estimator has the form

B ν2
Rubin

MSE(X̄MImp)
= 2(1−f )

κ n+f+ 1
m (1−f )(κ n+1)

< 2(1−f )
κ n+f . (6)



Theorem (cont.)
For non-informative prior, i.e. when κ → ∞:

MSE(X̄MImp) = E
(
X̄MImp − M

)2
= σ2

r

(
1 + 1−f

m

)
;

Rubin’s estimator, ν2
Rubin, is unbiased for MSE(X̄MImp).
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The Rubin-type family

Recall

Ūm = 1
mn

m∑
ℓ=1

(S(ℓ)
Imp)

2 and Bm = 1
m−1

m∑
ℓ=1

(X̄ (ℓ)
Imp − X̄MImp)

2.

We introduce the Rubin-type family of estimators of the
MSE(X̄MImp):

R =
{
ν2(α, β) = αŪm + βBm, α, β ∈ R

}
.



Examples

Rubin’s estimator:

ν2
Rubin = ν2

1,m+1
m

∈ R,

i.e. it is Rubin-type with α = 1 and β = m+1
m .

Bjørnstad’s estimator:

ν2
Bjørnstad = ν2

1,m+1−f
m(1−f )

∈ R,

i.e. it is Rubin-type with α = 1 and β = m+1−f
m(1−f )

f→0→ m+1
m



Towards optimal weights

We search for the optimal estimator of the MSE of X̄MImp within
the family R, i.e. we serach for optimal weights (α, β).

The result is elementary but the formulas are complicated.



Monster constants

We need to introduce three + four constants

a =1 + 2n(1−f )
(n−1)2m +

2(1−τ2)(4−2n+(r−2− r+1
m )(1+τ2))

(r+1)(n−1)2 ,

b = τ4(1−f )2

f 2
m+1
m−1 ,

c = τ2(1−f )
f

(
1 + 2τ2

m(n−1) +
2(τ2−1)

(r+1)(n−1)

)

A1 = a m+1
m−1 −

(
1 + 2τ2

m(n−1) +
2(τ2−1)

(r+1)(n−1)

)2
,

A2 = 1
m−1 − τ2

m(n−1) +
1−τ2

(r+1)(n−1) ,

A3 = τ2−r
m + (1 − τ 2)

(
n
m +

3−n+
(

r−2− r+1
m

)
(1+τ2)

r+1

)
,

A4 = τ 2 + (1−f )τ2

m − (1 − τ 2)f .



Theorem

Let

α∗ =
2n(r−1)
r(r+1)

A2A4
A1

and β∗ =
2(r−1)

(n−1)2(r+1)(1−f )τ2
A3A4

A1
.

Then ν2(α∗, β∗) has the smallest MSE among the estimators of
the MSE(X̄MImp) in the Rubin-type family R.

The optimal MSE is

MSE(ν2(α∗, β∗))

=σ4

n2

[
(r+1)(α2

∗a+β2
∗ b+2α∗β∗ c)

r−1 − 2α∗
A4
f − 2β∗

(1−f )τ2A4
f 2 +

A2
4

f 2

]
.
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Figure: The RMSE of the optimal ν2(α∗, β∗) estimator is smaller that
the RMSE of Rubin’s estimator. Here m = 5, n = 100, σ2 = 1, µ = 0
and κ = 1. The empirical versions are computed from 100 repetitions.



Theorem (Non-informative prior)
Consider the case of κ → ∞, i.e. τ = 1. Let

α∗,∞ = nm−2m+1
f (m−1) K and β∗,∞ = − r−1

(1−f )(n−1)K , (7)

where

K =
2(r−1)(1+ 1−f

m )

m(n−1)(r+1)
[(

1+ 2(n−r)
m(n−1)2

)
(1+ 2

m−1)−
(

1+ 2
m(n−1)

)2
] .

Then ν2(α∗,∞, β∗,∞) is the optimal estimator of MSE(X̄MImp) in
the family R. Its MSE is

MSE
(
ν2(α∗,∞, β∗,∞)

)
= σ4

n2

{
r+1
r−1

[
α2
∗,∞

(
1 + 2n(1−f )

(n−1)2m

)
+ β2

∗,∞
(1−f )2

f 2

(
1 + 2

m−1

)
+2α∗,∞β∗,∞

(1−f )
f

(
1 + 2

m(n−1)

)]
−
[
2α∗,∞f + 2β∗,∞(1 − f )2 −

(
1 + 1−f

m

)]
1+ 1−f

m
f 2

}
.



Simplified quasi-optimal weights
Since

lim
n→∞

α∗,∞ =
1+ 1−f

m
f and lim

n→∞
nβ∗,∞ = − (m−1)f(1+ 1−f

m )
m(1−f )

if the sample size n is large and number of imputations m is
small one can use approximate values of α∗,∞ and β∗,∞:

α̃∗,∞ =
1+ 1−f

m
f and β̃∗,∞ = − (m−1)f(1+ 1−f

m )
nm(1−f ) .

Since

lim
m→∞

α̃∗,∞ = 1
f and lim

m→∞
nβ̃∗,∞ = − f

1−f

if both n and m are large one can use approximate values of
α∗,∞ and β∗,∞:

α∗∗ =
1
f and β∗∗ = − f

n(1−f ) .
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for m = 5, n = 500, σ2 = 1, κ = ∞ (τ2 = 1).
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perform better than Rubin’s estimator. The computations were done
for m = 100, n = 500, σ2 = 1, κ = ∞ (τ2 = 1).
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Unbiased Rubin-type estimators

Rubin’s estimator is unbiased for MSE(X̄MImp), i.e.

ν2
Rubin ∈ Ru = {ν2

α,β ∈ R : E ν2
α,β = MSE X̄MImp}.

As it is shown below, ν2
Rubin is non-admissible also in Ru.

Theorem
Let

α∗,u = 1
f

(
1 + 1−f

m

)
(m(n−2)+1)(n−1)

m(n−1)2−(m−1)(n+r−2) (8)

and
β∗,u = − 1

1−f

(
1 + 1−f

m

)
(r−1)(m−1)

m(n−1)2−(m−1)(n+r−2) . (9)

Then ν2(α∗,u, β∗,u) is optimal estimator of the MSE of the X̄MImp
in the class Ru.

Simplified versions of ν2(α∗,u, β∗,u) for large n and small/large
m are the same as for ν2(α∗,∞, β∗,∞).



MSE of Rubin’s estimator

Theorem

MSE(ν2
Rub) =

2σ4

r−1

([
1
n
+

(m + 1)(1 − f )
mr

]2

+ A

)
, (10)

where

A = r+1
m

[
n − r

n2(n − 1)2 +
(m + 1)2(1 − f )2

m(m − 1)r2 + 2
(m + 1)(1 − f )

mrn(n − 1)

]
.



Non-admissibility of Rubin’s estimator
Now we will compare MSE of the optimal unbiased estimator
ν2(α∗,u, β∗,u) and the Rubin estimator for m → ∞ in the case of
non-informative priors.

Theorem
For any response rate f ∈ (0,1) and original sample size n

lim
m→∞

MSE(ν2(α∗,u, β∗,u)) =
2σ4

r2

[
1

r − 1
− (r − 1)f

n2 − 3n − r + 3

]
.

(11)
and

lim
m→∞

MSE(ν2
Rub) =

2σ4

r−1

(
1
n
+

1 − f
r

)2

. (12)

Consequently,

lim
m→∞

MSE(ν2(α∗,u ,β∗,u))

MSE(ν2
Rub)

=
1
r

[
1 − (r − 1)2f

n2 − 3n − r + 3

]
. (13)
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Figure: For non-informative prior Rubin’s estimator is not optimal
among unbiased estimators from the class R. The computations were
done for m = 5, n = 100, σ2 = 1, κ = 1000 and 100 repetitions for the
empirical standard deviation (SD).



Recommendation

To estimate the variance/MSE of X̄MImp, instead of Rubin’s

estimator, use

ν2 = 1
f Um − f

n(1−f )Bm

THANK YOU!!!
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