Multiple imputation: Isn't Rubin's estimator over-optimistic?

Jacek Wesołowski
Statistics Poland
&
Warsaw Univ. of Technology

4th Congress of Polish Statistics Warsaw, June 2-4, 2024

Plan

- Multiple imputation and Rubin's estimator
- 2 GmG model
- The Rubin-type family of estimators
- Unbiased Rubin-type estimators

- Multiple imputation and Rubin's estimator
- 2 GmG model

- The Rubin-type family of estimators
- Unbiased Rubin-type estimators

Imputation estimators

- $\mathbf{X} = (X_1, \dots, X_n)$ the sample:
 - $\mathbf{X}_R = (X_i, i \in R)$ observed part of \mathbf{X} ,
 - $\mathbf{X}_{R^c} = (X_i, i \in R^c)$ missing part of \mathbf{X} .

Missing values are replaced by imputed: \widetilde{X}_i , $i \in \mathbb{R}^c$, i.e. the imputed sample $\widetilde{\mathbf{X}} = (\widetilde{X}_1, \dots, \widetilde{X}_n)$ is defined through

$$\widetilde{X}_i = \left\{ egin{array}{ll} X_i, & \mbox{if } i \in R, \\ \widetilde{X}_i \mbox{ (imputed)}, & \mbox{if } i \in R^c. \end{array}
ight.$$

Let $\hat{\theta} := h(\mathbf{x})$ be an estimator of parameter θ . Its imputation version is

$$\hat{\theta}_{\mathrm{Imp}} = h(\widetilde{\mathbf{X}}).$$

The imputation version of \bar{X} and S^2 :

$$\bar{X}_{lmp} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}, \qquad S_{lmp}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\widetilde{X}_{i} - \bar{X}_{lmp})^{2}.$$

Multiple imputation (MI) estimators

Multiple imputation:

imputed samples

$$\widetilde{\mathbf{X}}^{(\ell)} = (X_i, i \in R, \ \widetilde{X}_i^{(\ell)}, i \in R^c), \quad \ell = 1, \dots, m,$$

respective estimators

$$\hat{\theta}_{\text{Imp}}^{(\ell)} = h\left(\widetilde{\boldsymbol{X}}^{(\ell)}\right), \quad \bar{X}_{\text{Imp}}^{(\ell)}, \quad (S_{\text{Imp}}^{(\ell)})^2, \quad \ell = 1, \dots, m.$$

MImp estimators

$$\hat{\theta}_{\text{MImp}} = \frac{1}{m} \sum_{\ell=1}^{m} \hat{\theta}_{\text{Imp}}^{(\ell)}, \quad \bar{X}_{\text{MImp}} = \frac{1}{m} \sum_{\ell=1}^{m} \bar{X}_{\text{Imp}}^{(\ell)}.$$

Rubin's estimator of the variance of \bar{X}_{MImp}

The popular Rubin estimator of the variance of \bar{X}_{MImp} is

$$\hat{\nu}_{\text{Rubin}}^2 = \bar{U}_m + \frac{m+1}{m} B_m,$$

where

$$ar{U}_m = rac{1}{mn} \sum_{\ell=1}^m (\mathcal{S}_{\mathrm{Imp}}^{(\ell)})^2$$

and

$$B_m = \frac{1}{m-1} \sum_{\ell=1}^{m} (\bar{X}_{\text{Imp}}^{(\ell)} - \bar{X}_{\text{MImp}})^2.$$

Over-optimistic...?

Let $(\mathbf{X}_R, \mathbf{X}_{R^c})$ be an iid sample with mean μ and variance σ^2 .

Hot-deck imputation: $\widetilde{X}_{j}^{(\ell)} = X_{K_{j}^{(\ell)}}, j \in R^{c}$, where $K_{j}^{(\ell)}$ are iid uniform on $R, \ell = 1, \ldots, m, j \in R^{c}$,

Then

$$\bar{X}_{\mathrm{MImp}} = f\bar{X}_{R} + \frac{1}{mn} \sum_{\ell=1}^{m} \sum_{j \in R^{c}} X_{K_{j}^{(\ell)}}$$

is unbiased for μ and $\mathbb{V}{
m ar}(ar{X}_{
m MImp}) = rac{\sigma^2}{r} \left(1 + rac{(1-f)(r-1)}{mn}
ight)$

But

$$\mathbb{B}(\nu_{\text{Rubin}}^2) = \mathbb{E}\,\nu_{\text{Rubin}}^2 - \mathbb{V}\text{ar}(\bar{X}_{\text{MImp}}) = -\frac{(1-f)[n(n-r+1)+2(r-1)]}{n(n-1)r} < \mathbf{0}.$$

Over-optimistic...?

Let (X_R, X_{R^c}) be a sample from $N(\mu, \sigma^2)$.

Hot-deck imputation: $\widetilde{X}_{j}^{(\ell)} = \overline{X}_{R} + S_{R}Z_{j}^{(\ell)}$, where \overline{X}_{R} and S_{R}^{2} are the sample (\mathbf{X}_{R}) mean and variance and $Z_{j}^{(\ell)}$, $\ell = 1, \ldots, m$, $j \in R^{c}$, are iid N(0, 1) and are independent of \mathbf{X}_{R} .

Then

$$ar{X}_{ ext{MImp}} = ar{X}_R + rac{1-f}{mn} S_R \sum_{\ell=1}^m \sum_{j \in R^c} Z_j^{(\ell)}$$

is unbiased and $\mathbb{V}\mathrm{ar}(\bar{X}_{\mathrm{MImp}}) = \frac{\sigma^2}{r} \left(1 + \frac{(1-f)f}{m} \right)$.

But

$$\mathbb{B}(\nu_{\text{Rubin}}^2) = \mathbb{E} \, \nu_{\text{Rubin}}^2 - \mathbb{V}\text{ar}(\bar{X}_{\text{MImp}}) = -\frac{\sigma^2(1-f)[(n-1)(n-r)-1]}{n(n-1)r} < \mathbf{0}.$$

Deficiencies of Rubin's estimator

In both cases:

$$\begin{array}{c} \frac{\mathbb{B}(\nu_{\text{Rubin}}^2)}{\mathbb{V}\text{ar}(\bar{X}_{\text{MImp}})} \stackrel{n \to \infty}{\longrightarrow} \ -1 \, . \end{array}$$

Basic problems with $\hat{\nu}_{\text{Rubin}}^2$:

Typically it is

- BIASED
- NON-ADMISSIBLE

We will discuss these issues in a relatively simple Bayesian GmG-model: Gaussian variables with Gaussian mean.

Deficiencies of Rubin's estimator

In both cases:

$$\label{eq:local_loss} \frac{\mathbb{B}(\nu_{\text{Rubin}}^2)}{\mathbb{V}\text{ar}(\bar{X}_{\text{MImp}})} \overset{n \to \infty}{\longrightarrow} -1.$$

Basic problems with $\hat{\nu}_{Rubin}^2$:

Typically it is

- BIASED
- NON-ADMISSIBLE

We will discuss these issues in a relatively simple Bayesian GmG-model: Gaussian variables with Gaussian mean.

- Multiple imputation and Rubin's estimator
- 2 GmG model

- The Rubin-type family of estimators
- 4 Unbiased Rubin-type estimators

GmG Bayesian model:

Let $\mu \in \mathbb{R}$, $\kappa, \sigma > 0$. Then the $GmG(\mu, \sigma^2, \kappa)$ Bayesian model is defined through:

$$\mathbf{X}|M \sim \left(\mathrm{N}(M,\sigma^2)\right)^{\otimes n},$$
 $M \sim \mathrm{N}(\mu,\kappa\sigma^2).$

Then

$$\mathbf{X}_{R^c}|\mathbf{X}_R \sim N\left(\frac{r_{\kappa}\bar{X}_R + \mu}{r_{\kappa} + 1}, \ \sigma^2(\mathbb{I}_{R_c} + \frac{\kappa}{r_{\kappa} + 1}\mathbf{1}_{R_c}\mathbf{1}_{R_c}^T)\right).$$
 (1)

Non-informative prior: for $\kappa=\infty.$ Take $\kappa\to\infty$ in (1):

$$\mathbf{X}_{R^c}|\mathbf{X}_R \sim \mathrm{N}\left(\bar{X}_R, \ \sigma^2(\mathbb{I}_{R_c} + \frac{1}{r}\mathbf{1}_{R_c}\mathbf{1}_{R_c}^T)\right).$$
 (2)

Representation

Consequently, \mathbf{X}_{R^c} has the representation

$$\mathbf{X}_{R^c} = \frac{\kappa r \bar{X}_R + \mu}{\kappa r + 1} \mathbf{1}_{R^c} + \sigma \left(\mathbf{Z} + \sqrt{\frac{\kappa}{\kappa r + 1}} V \mathbf{1}_{R^c} \right),$$
 (3)

where r = #(R),

- $\mathbf{Z} = (Z_i, i \in R^c)$ has iid N(0, 1) components,
- $V \sim N(0, 1)$,
- (**Z**, *V*, **X**_R) independent.

Assume σ^2 unknown. How to impute?

Approximate

$$\sigma^2 \approx S_R^2 = \frac{1}{r-1} \sum_{k \in R} (X_k - \bar{X}_R)^2.$$

Impute missing X's by

$$\widetilde{\mathbf{X}}_{R^c}^{(\ell)} = rac{\kappa r \overline{X}_R + \mu}{\kappa r + 1} \, \mathbf{1}_{R^c} + \mathcal{S}_R \left(\mathbf{Z}^{(\ell)} + \sqrt{rac{\kappa}{\kappa r + 1}} \, V^{(\ell)} \, \mathbf{1}_{R^c}
ight),$$

$$\ell = 1, \ldots, m$$
.

Here, $(\mathbf{Z}^{(\ell)},\ V^{(\ell)})$, $\ell=1,\ldots$, are independent copies of $(\mathbf{Z},\ V)$. In particular, $(\mathbf{Z}^{(\ell)},\ V^{(\ell)})_{\ell=1,\ldots,m}$ and \mathbf{X}_R are independent.

The case of non-informative prior

The case of non-informative prior is by taking $\kappa \to \infty$ in (3).

Then

$$\mathbf{X}_{R^c} = \bar{X}_R \mathbf{1}_{R^c} + \sigma \left(\mathbf{Z} + \frac{1}{\sqrt{r}} V \mathbf{1}_{R^c} \right),$$

and thus impute missing X's by

$$\widetilde{\boldsymbol{X}}_{R^c}^{(\ell)} = \bar{X}_R \boldsymbol{1}_{R^c} + S_R \left(\boldsymbol{Z}^{(\ell)} + \tfrac{1}{\sqrt{r}} \; V^{(\ell)} \, \boldsymbol{1}_{R^c} \right),$$

$$\ell = 1, \ldots, m$$
.

Theorem

Consider the $GmG(\mu, \sigma^2, \kappa)$ model. The multiple imputation estimator of M has the form

$$\bar{X}_{MImp} = f \frac{\kappa n + 1}{\kappa r + 1} \bar{X}_R + (1 - f) \left(\frac{\mu}{\kappa r + 1} + S_R \underline{W} \right),$$
 (4)

where $f = \frac{r}{n}$ and $\underline{W} = \frac{1}{m} \sum_{\ell=1}^{m} \ \bar{W}^{(\ell)}$ with

$$\bar{W}^{(\ell)} = \frac{1}{n-r} \sum_{i \in R^c} Z_i^{(\ell)} + \sqrt{\frac{\kappa}{\kappa r + 1}} V^{(\ell)}.$$

 $ar{X}_{ ext{MImp}}$ is ubiased for M, i.e. $\mathbb{E}\,ar{X}_{ ext{MImp}}=\mathbb{E}\, ext{M}$, and

$$MSE \,\bar{X}_{MImp} = \mathbb{E} \left(\bar{X}_{MImp} - M \right)^2 = \left(\frac{n\kappa + f}{n\kappa + 1} + \frac{1 - f}{m} \right) \, \frac{\tau^2 \sigma^2}{r}, \quad (5)$$

where $\tau^2 = \frac{n\kappa+1}{r\kappa+1} f$.

Theorem (cont.)

Statistics B_m and \bar{U}_m assume the form:

$$\begin{split} B_{m} = & (1 - f)^{2} S_{R}^{2} S_{\bar{W}}^{2}, \\ \bar{U}_{m} = & \frac{1}{n(n-1)} \left\{ S_{R}^{2} \left[r - 1 + (n - r - 1) \bar{S}_{Z}^{2} \right] \right. \\ & \left. + r(1 - f) \left(\frac{\bar{X}_{R} - \mu}{r \kappa + 1} - S_{R} \underline{W} \right)^{2} + \frac{r}{1 - f} \frac{m - 1}{m} B_{m} \right\}, \end{split}$$

where

$$\bar{S}_{Z}^{2} = \frac{1}{m} \sum_{\ell=1}^{m} S_{Z^{(\ell)}}^{2} \quad and \quad S_{\bar{W}}^{2} = \frac{1}{m-1} \sum_{\ell=1}^{m} \left(\bar{W}^{(\ell)} - \underline{W} \right)^{2}.$$

Moreover,

$$\mathbb{E}\,\bar{U}_m=rac{\sigma^2}{n},\quad and \quad \mathbb{E}\,B_m=(1-f)rac{\tau^2\sigma^2}{r}.$$

Theorem (cont.)

Rubin's estimator $\nu_{\rm Rubin}^2$ of MSE($\bar{X}_{\rm MImp}$) is biased with the bias

$$\mathbb{B}\,\nu_{\text{Rubin}}^2 = \mathbb{E}\,\nu_{\text{Rub}}^2 - \text{MSE}(\bar{X}_{\text{MImp}}) = \frac{2(1-f)}{\kappa\,n+1}\,\frac{\tau^2\sigma^2}{r}.$$

The relative bias of Rubin's estimator has the form

$$\frac{\mathbb{B}\,\nu_{\text{Rubin}}^{2}}{\text{MSE}(\bar{X}_{\text{MImp}})} = \frac{2(1-f)}{\kappa\,n + f + \frac{1}{m}(1-f)(\kappa\,n + 1)} < \frac{2(1-f)}{\kappa\,n + f}.\tag{6}$$

Theorem (cont.)

For non-informative prior, i.e. when $\kappa \to \infty$:

•
$$MSE(\bar{X}_{MImp}) = \mathbb{E}\left(\bar{X}_{MImp} - M\right)^2 = \frac{\sigma^2}{r}\left(1 + \frac{1-f}{m}\right);$$

• Rubin's estimator, ν_{Rubin}^2 , is unbiased for MSE(\bar{X}_{MImp}).

- Multiple imputation and Rubin's estimator
- 2 GmG model
- The Rubin-type family of estimators
- 4 Unbiased Rubin-type estimators

The Rubin-type family

Recall

$$ar{U}_m = rac{1}{mn} \sum_{\ell=1}^m (S_{
m Imp}^{(\ell)})^2$$
 and $B_m = rac{1}{m-1} \sum_{\ell=1}^m (ar{X}_{
m Imp}^{(\ell)} - ar{X}_{
m MImp})^2$.

We introduce the Rubin-type family of estimators of the $\mathrm{MSE}(\bar{X}_{\mathrm{MImp}})$:

$$\mathfrak{R} = \left\{ \nu^2(\alpha, \beta) = \alpha \bar{\textit{U}}_{\textit{m}} + \beta \textit{B}_{\textit{m}}, \quad \alpha, \beta \in \mathbb{R} \right\}.$$

Examples

• Rubin's estimator:

$$\nu_{\mathrm{Rubin}}^2 = \nu_{1,\frac{m+1}{m}}^2 \in \mathfrak{R},$$

i.e. it is Rubin-type with $\alpha = 1$ and $\beta = \frac{m+1}{m}$.

Bjørnstad's estimator:

$$\nu_{\mathrm{Bjørnstad}}^2 = \nu_{1,\frac{m+1-f}{m(1-f)}}^2 \in \mathfrak{R},$$

i.e. it is Rubin-type with $\alpha = 1$ and $\beta = \frac{m+1-f}{m(1-f)} \stackrel{f \to 0}{\to} \frac{m+1}{m}$

Towards optimal weights

We search for the optimal estimator of the MSE of \bar{X}_{MImp} within the family \mathcal{R} , i.e. we serach for optimal weights (α, β) .

The result is elementary but the formulas are complicated.

Monster constants

We need to introduce three + four constants

$$\begin{split} a = & 1 + \frac{2n(1-f)}{(n-1)^2m} + \frac{2(1-\tau^2)\left(4-2n+\left(r-2-\frac{r+1}{m}\right)(1+\tau^2)\right)}{(r+1)(n-1)^2}, \\ b = & \frac{\tau^4(1-f)^2}{f^2} \, \frac{m+1}{m-1}, \\ c = & \frac{\tau^2(1-f)}{f} \left(1 + \frac{2\tau^2}{m(n-1)} + \frac{2(\tau^2-1)}{(r+1)(n-1)}\right) \end{split}$$

$$A_{1} = a \frac{m+1}{m-1} - \left(1 + \frac{2\tau^{2}}{m(n-1)} + \frac{2(\tau^{2}-1)}{(r+1)(n-1)}\right)^{2},$$

$$A_{2} = \frac{1}{m-1} - \frac{\tau^{2}}{m(n-1)} + \frac{1-\tau^{2}}{(r+1)(n-1)},$$

$$A_{3} = \frac{\tau^{2}-r}{m} + (1-\tau^{2})\left(\frac{n}{m} + \frac{3-n+\left(r-2-\frac{r+1}{m}\right)(1+\tau^{2})}{r+1}\right),$$

$$A_{4} = \tau^{2} + \frac{(1-r)\tau^{2}}{m} - (1-\tau^{2})f.$$

Theorem

Let

$$\alpha_* = \frac{2n(r-1)}{r(r+1)} \frac{A_2 A_4}{A_1}$$
 and $\beta_* = \frac{2(r-1)}{(n-1)^2 (r+1)(1-f)\tau^2} \frac{A_3 A_4}{A_1}$.

Then $\nu^2(\alpha_*, \beta_*)$ has the smallest MSE among the estimators of the $\mathrm{MSE}(\bar{X}_{MImp})$ in the Rubin-type family \Re .

The optimal MSE is

$$\begin{aligned} & \text{MSE}(\nu^2(\alpha_*, \beta_*)) \\ = & \frac{\sigma^4}{n^2} \left[\frac{(r+1)(\alpha_*^2 a + \beta_*^2 b + 2\alpha_* \beta_* c)}{r-1} - 2\alpha_* \frac{A_4}{f} - 2\beta_* \frac{(1-f)\tau^2 A_4}{f^2} + \frac{A_4^2}{f^2} \right]. \end{aligned}$$

RMSE for optimal and Rubin estimators

Figure: The RMSE of the optimal $\nu^2(\alpha_*, \beta_*)$ estimator is smaller that the RMSE of Rubin's estimator. Here m=5, n=100, $\sigma^2=1$, $\mu=0$ and $\kappa=1$. The empirical versions are computed from 100 repetitions.

Theorem (Non-informative prior)

Consider the case of $\kappa \to \infty$, i.e. $\tau = 1$. Let

$$\alpha_{*,\infty} = \frac{nm-2m+1}{f(m-1)}K$$
 and $\beta_{*,\infty} = -\frac{r-1}{(1-f)(n-1)}K$, (7)

where

$$K = \frac{2(r-1)\left(1 + \frac{1-f}{m}\right)}{m(n-1)(r+1)\left[\left(1 + \frac{2(n-r)}{m(n-1)^2}\right)\left(1 + \frac{2}{m-1}\right) - \left(1 + \frac{2}{m(n-1)}\right)^2\right]}.$$

Then $\nu^2(\alpha_{*,\infty},\beta_{*,\infty})$ is the optimal estimator of $\mathrm{MSE}(\bar{X}_{MImp})$ in the family \mathfrak{R} . Its MSE is

$$\begin{aligned} & \text{MSE}\left(\nu^{2}(\alpha_{*,\infty},\beta_{*,\infty})\right) \\ &= \frac{\sigma^{4}}{n^{2}} \left\{ \frac{r+1}{r-1} \left[\alpha_{*,\infty}^{2} \left(1 + \frac{2n(1-f)}{(n-1)^{2}m} \right) + \beta_{*,\infty}^{2} \frac{(1-f)^{2}}{f^{2}} \left(1 + \frac{2}{m-1} \right) \right. \right. \\ &\left. + 2\alpha_{*,\infty}\beta_{*,\infty} \frac{(1-f)}{f} \left(1 + \frac{2}{m(n-1)} \right) \right] \\ &\left. - \left[2\alpha_{*,\infty}f + 2\beta_{*,\infty}(1-f)^{2} - \left(1 + \frac{1-f}{m} \right) \right] \frac{1 + \frac{1-f}{m}}{f^{2}} \right\}. \end{aligned}$$

Simplified quasi-optimal weights

Since

$$\lim_{n\to\infty} \alpha_{*,\infty} = \frac{1+\frac{1-f}{m}}{f} \quad \text{and} \quad \lim_{n\to\infty} n\beta_{*,\infty} = -\frac{(m-1)f\left(1+\frac{1-f}{m}\right)}{m(1-f)}$$

if the sample size n is large and number of imputations m is small one can use approximate values of $\alpha_{*,\infty}$ and $\beta_{*,\infty}$:

$$\widetilde{\alpha}_{*,\infty} = \frac{1 + \frac{1 - f}{m}}{f}$$
 and $\widetilde{\beta}_{*,\infty} = -\frac{(m - 1)f\left(1 + \frac{1 - f}{m}\right)}{nm(1 - f)}$.

Since

$$\lim_{m\to\infty} \widetilde{\alpha}_{*,\infty} = \frac{1}{f} \quad \text{and} \quad \lim_{m\to\infty} n\widetilde{\beta}_{*,\infty} = -\frac{f}{1-f}$$

if both n and m are large one can use approximate values of $\alpha_{*,\infty}$ and $\beta_{*,\infty}$:

$$\alpha_{**} = \frac{1}{f}$$
 and $\beta_{**} = -\frac{f}{n(1-f)}$.

Figure: Simplified and approximate optimal estimators of the MSE perform better than Rubin's estimator. The computations were done for m = 5, n = 500, $\sigma^2 = 1$, $\kappa = \infty$ ($\tau^2 = 1$).

Figure: Simplified and approximate optimal estimators of the MSE still perform better than Rubin's estimator. The computations were done for m = 100, n = 500, $\sigma^2 = 1$, $\kappa = \infty$ ($\tau^2 = 1$).

- Multiple imputation and Rubin's estimator
- 2 GmG model

- The Rubin-type family of estimators
- Unbiased Rubin-type estimators

Unbiased Rubin-type estimators

Rubin's estimator is unbiased for $MSE(\bar{X}_{MImp})$, i.e.

$$\nu_{\mathrm{Rubin}}^2 \in \mathfrak{R}_{\textit{u}} = \{\nu_{\alpha,\beta}^2 \in \mathfrak{R}: \ \mathbb{E}\, \nu_{\alpha,\beta}^2 = \mathrm{MSE}\, \bar{X}_{\mathit{MImp}}\}.$$

As it is shown below, $\nu_{\rm Rubin}^2$ is non-admissible also in \Re_u .

Theorem

Let

$$\alpha_{*,u} = \frac{1}{f} \left(1 + \frac{1-f}{m} \right) \frac{(m(n-2)+1)(n-1)}{m(n-1)^2 - (m-1)(n+r-2)}$$
(8)

and

$$\beta_{*,u} = -\frac{1}{1-f} \left(1 + \frac{1-f}{m} \right) \frac{(r-1)(m-1)}{m(n-1)^2 - (m-1)(n+r-2)}. \tag{9}$$

Then $\nu^2(\alpha_{*,u}, \beta_{*,u})$ is optimal estimator of the MSE of the \bar{X}_{MImp} in the class \mathfrak{R}_u .

Simplified versions of $\nu^2(\alpha_{*,u}, \beta_{*,u})$ for large n and small/large m are the same as for $\nu^2(\alpha_{*,\infty}, \beta_{*,\infty})$.

MSE of Rubin's estimator

Theorem

$$MSE(\nu_{Rub}^{2}) = \frac{2\sigma^{4}}{r-1} \left(\left[\frac{1}{n} + \frac{(m+1)(1-f)}{mr} \right]^{2} + A \right), \quad (10)$$

where

$$A = \frac{r+1}{m} \left[\frac{n-r}{n^2(n-1)^2} + \frac{(m+1)^2(1-f)^2}{m(m-1)r^2} + 2\frac{(m+1)(1-f)}{mrn(n-1)} \right].$$

Non-admissibility of Rubin's estimator

Now we will compare MSE of the optimal unbiased estimator $\nu^2(\alpha_{*,u},\beta_{*,u})$ and the Rubin estimator for $m\to\infty$ in the case of non-informative priors.

Theorem

For any response rate $f \in (0,1)$ and original sample size n

$$\lim_{m \to \infty} MSE(\nu^{2}(\alpha_{*,u}, \beta_{*,u})) = \frac{2\sigma^{4}}{r^{2}} \left[\frac{1}{r-1} - \frac{(r-1)f}{n^{2}-3n-r+3} \right].$$
(11)

and

$$\lim_{m \to \infty} MSE(\nu_{Rub}^2) = \frac{2\sigma^4}{r-1} \left(\frac{1}{n} + \frac{1-f}{r}\right)^2.$$
 (12)

Consequently,

$$\lim_{m \to \infty} \frac{\text{MSE}(\nu^2(\alpha_{*,u}, \beta_{*,u}))}{\text{MSE}(\nu^2_{Rub})} = \frac{1}{r} \left[1 - \frac{(r-1)^2 f}{n^2 - 3n - r + 3} \right]. \tag{13}$$

Figure: For non-informative prior Rubin's estimator is not optimal among unbiased estimators from the class \Re . The computations were done for m=5, n=100, $\sigma^2=1$, $\kappa=1000$ and 100 repetitions for the empirical standard deviation (SD).

Recommendation

To estimate the variance/MSE of \bar{X}_{MImp} , instead of Rubin's estimator, use

$$u^2 = \frac{1}{f}\overline{U}_m - \frac{f}{n(1-f)}B_m$$

THANK YOU!!!

Recommendation

To estimate the variance/MSE of \bar{X}_{MImp} , instead of Rubin's estimator, use

$$u^2 = \frac{1}{f}\overline{U}_m - \frac{f}{n(1-f)}B_m$$

THANK YOU!!!