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Compounding parts of the statistical quality control

1 Management quality

2 Process quality charts (quality control and improvement)

3 Planned experiments (selection of the most important features)

4 Acceptance sampling (AS) (testing a production lot by a consumer).
AS applied in

industry,
manufacturing,
receiving of agriculture production,
...
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Acceptance sampling in a war industry

Main terminology of AS formulated in 1925-26
by Dodge H. F. & H. G. Romig.

During the World War II, Dodge had an office in the Pentagon
served as a consultant to the Secretary of War,
was an instructor in more than 30 quality control training conferences
for Army Ordnance.

The United States Military developed sampling inspection schemes as part
of the World War II effort, MIL-STD-105E, valid until 1995.

Rheinmetall is an international integrated technology group that develops
and sells components, systems and services for the security (munitions)
and civil industries.
It uses statistical quality control in the ammunition manufacturing.
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Acceptance sampling

E. G. Schilling developed the field further.

Production from a producer comes to a consumer in the lots.
Objection – to accept a lot or to reject it (Schilling 2008). Possibilities:

to accept without inspection,
100% inspection,
acceptance sampling for attributes and variables.

Advantages of acceptance sampling:
less expensive than 100% inspection,
it is applicable in the case of destructive testing,
fewer personal needed.

Disatvantages:
the risk to accept ”bad” lots and reject ”good” ones,
less information obtained about the production quality.

Danutė Krapavickaitė (Lithuania) Modified acceptance sampling for statistical quality control 4 / 25



Types of the sampling plans

1 Single sampling plan. n items are selected from a lot at random.
If # defectives d , d ≤ C ⇒ a lot is accepted;

otherwise rejected.
2 Double sampling plan – 2 phase procedure.

Let n1 – size of the first sample.
If # defectives d1, d1 ≤ C1 ⇒ a lot is accepted.
If # defectives d1 > C2 > C1 ⇒ a lot is rejected.
If # defectives C1 < d1 ≤ C2 ⇒ a second sample of size n2 is drawn.

Let d2 # defectives observed. If d1 + d2

{
≤ C2 ⇒ lot accepted;
> C2 ⇒ lot rejected.

3 Multiple sampling plan. An extension of double sampling plan to
more than two phases.

4 Sequential sampling plan (Cochran’s proposal)

Danutė Krapavickaitė (Lithuania) Modified acceptance sampling for statistical quality control 5 / 25



Attribute sampling

Assumptions:
items are homogeneous in a lot,
they are selected to the sample independently with equal probabilities.

Let Y – random variable meaning # of defective items in a n-size sample
from a N – size lot.

If lot size N is not taken into account or n/N ∼ 0 ⇒ then the distribution:

Y ∼ Hypergeometric⇒∼ Binomial

Distribution function of Y

F (C | p) =
C∑

d=0

(
n
d

)
pd(1− p)n−d , C = 1, 2, ...
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Single sampling for attributes – traditional approach

Notations. α, β ∈ (0, 1); 0 < α < β < 1. C = 0, 1, 2, ..., n.
p0, p1 ∈ (0, 1); usually p0 < p1.
1− α – probability to accept a lot with allowable proportion p0 of
defective items

F (C | p0) = P(Y ≤ C | p0) ≥ 1− α, (1)

β – probability to accept a lot with unallowable proportion p1 of defective
items:

F (C | p1) = P(Y ≤ C | p1) ≤ β (2)

α = P(I type error) – produce’s risk that a ”good” lot is rejected.
β = P(II type error) – consumer’s risk that a ”bad” lot is accepted.

Aim: to find the smallest sample size n satisfying both (1) and (2), in
order to reach a compromise between producer and consumer.
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Beta distribution

Why not to use other sampling designs to select the items from a lot?
Why not to study distribution of the proportion p of defective items in
a lot?
Situation is similar to the audit sampling (Wywial, 2015).

Bayesian approach is used.
Beta distribution concentrated in the interval (0, 1),

p ∼ beta(a, b), a > 0, b > 0.

Its numerical characteristics:

E (p | a, b) = a
a + b ; Var(p | a, b) = ab

(a + b)2(a + b + 1) .
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Bayesian approach for posterior distribution of p
Let s – SRWR, n-size sample.
For any item i ∈ s; Ii = 1, if i is defective, Ii = 0 otherwise, i = 1, ...,N.
The sample data y =

∑
i∈s Ii .

Let g(p) ∼ beta(a, b), prior distribution for proportion p,

f (y , p) =
(
n
d

)
py (1− p)n−y – likelihood.

According to Bayesian theorem, posterior distribution for p:

g(p | y) = f (y | p)g(p)∫ 1
0 f (y | p)g(p)dp

∝ f (y | p)g(p).

Finally, the posterior distribution

g(p | y) ∝ beta(a + y , b + n − y). (3)

From here, a minimal sample size n satisfying (1), (2) will be found.
a, b are obtained assuming the admissible values of E (p | a, b),
Var(p | a, b).
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Notations for a stratified lot SRWR sampling design

Bayesian approach with SRWR sampling applied for each stratum
separately.

Table: 1. Notations

Stratified lot U = U1 ∪ ... ∪ UH , Ul ∩ Uh = ∅
Lot strata sizes N = N1 + ...+ NH
Sample s = s1 ∪ ... ∪ sH , sl ∩ sh = ∅
Sample strata sizes n = n1 + ...+ nH

Proportions of defective items p1, ..., pH
Likelihood functions f (y1 | p1), ..., f (yH | pH)
Prior densities of the proportions g(p1 | a1, b1), ..., g(pH | aH , bH)
Posterior densities of the proportions g(p1 | y1), ..., g(pH | yH)
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Stratified sampling design with proportional
allocation of the sample size and SRWR

A large number J of the values is generated from the posterior distribution
in each stratum:

p(j)
1 , ..., p(j)

H , j = 1, ..., J .

The simulated values of the strata posterior densities are aggregated:

p(j) = N1
N p(j)

1 + ...+ NH
N p(j)

H , j = 1, ..., J . (4)

They are considered to be simulated values from the posterior density of p.

These values are used for the statistical inference from the posterior.
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Unequal probability sampling with replacement and
with probabilities proportional to size
x – auxiliary size variable. Selection probabilities
qk = xk/

∑
i∈U xi , k = 1, ...,N.

s – n-size SRWR pps-sample from N-size population.
Inclusion probabilities πk = 1− (1− qk)n, k ∈ U .
Ik = 0 or Ik = 1, k = 1, ...,N.

Task: to find a posterior distribution of a proportion p =
∑N

k=1 Ik/N.

A discrete study variable I is replaced by a continuous latent variable z
(Little, 2022) satisfying a model

zk = p +√πk · εk , εk ∼ N (0, σ2); k ∈ s, σ > 0.

This heterogeneous model is rearranged to a homogeneous model:
zk√
πk

= p
√
πk

+ εk , εk ∼ N (0, σ2); k ∈ s.
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Continuation 1
Change of notations:

z∗k = zk/
√
πk , µ∗k = p/√πk (5)

The model becomes y∗k = µ∗k + εk , k ∈ s
Replacement µ∗k by µ̃ for k ∈ s;

z∗k = µ̃+ εk , k ∈ s ⇒
data z∗ distribution N (µ̃, σ2) with σ2 unknown.
Posterior marginal distribution of µ̃:

g(µ̃ | z∗k , k ∈ s, σ2) ∝ f (z∗k ,∈ s, | µ̃, σ2)g(µ̃ | σ2)g(σ2).
It is obtained from likelihood: f (z∗k , k ∈ s | µ̃, σ2) ∼ N (µ̃, σ2).
Prior distributions (κn = n + 1, σ2

0 guessed):
g(µ̃ | σ2, z∗k , k ∈ s) ∼ N (µ̃0, σ

2/κn),

g(σ2) ∼ Invgamma
(1
2 ,
σ2

0
2
)
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Continuation 2

Posterior marginal density for µ̃ :

g(µ̃ | zk , k ∈ s;σ2) ∼ N (µ̃n, σ
2/κn), µ̃n = 1

κn
µ0 + y

κn
,

µ̃ is multiplied by √πk :

g(µ̃√πk | σ2, z∗k , k ∈ s) ∼ N
(√
πk µ̃n, (

√
πkσ)2/κn

)
, k ∈ s. (6)

According to (5), we have µ̃√πk = pµ̃/µ∗k , k ∈ s (because µ∗k = p/√πk).

The sample average of these values

1
n
∑
k∈s

µ̃
√
πk = pµ̃1n

∑
k∈s

1
µ∗k

= p µ̃

Hn
∼ p,

where Hn is a harmonic mean of the expressions µ∗k , k ∈ s.
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Hypothesis formulation

P0 = (0, c] and P1 = (c, 1), c ∈ (0, 1). (7)

The hypothesis H0 is tested against the alternative hypothesis H1:

H0 : p ∈ P0, H1 : p ∈ P1. (8)

These hypotheses are mutually exclusive and exhaustive.

Introduction of the loss function L(p ∈ Pi ,Hj), which means the loss or
the risk of accepting the hypothesis Hj when p ∈ Pi for i , j = 1, 2.
There are four possible cases:

L(p ∈ Pi ,Hi) = 0 for i = 1, 2;
L(p ∈ P0,H1) = α for α ∈ (0, 1);
L(p ∈ P1,H0) = β for β ∈ (0, 1).
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Odds ratio
The expected posterior loss under acceptance of each of the hypotheses
taking into account the risk of the producer and that of the consumer:

E
(
L(H0)

)
= β · P(H1 | y);

E
(
L(H1)

)
= α · P(H0 | y).

In Bayesian hypotheses testing, the decision is taken in favour of the
hypothesis H0 with the minimal posterior loss (Koch, 2007). Therefore, H0
is not rejected for

E (L(H1))
E (L(H0)) > 1 or P(H0 | y)

P(H1 | y) >
β

α
. (9)

Probability P(H0 | y) = P(p ≤ c | y) is a value of the posterior
distribution function of the proportion p at the point c ∈ (0, 1). The last
inequality becomes

OR(y) = P(p ≤ c | y)
1− P(p ≤ c | y) >

β

α
. (10)

If (10) is satisfied, there is no reason to reject the null hypothesis H0 in (8).
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Hypothesis testing by odds ratio

The odds ratio of the posterior distribution:
OR(y) = P(p ≤ c | y)/P(p > c | y); K = β/α.

Table: 2. The Evidence Categories for H0 and H1

OR(y) Interpretation

> 10K Strong evidence for hypothesis H0
3K ÷ 10K Moderate evidence for hypothesis H0
2K ÷ 3K Week evidence for hypothesis H0
K ÷ 2K Insignificant evidence for hypothesis H0

K No evidence
K/2÷ K Insignificant evidence for alternative H1

K/3÷ K/2 Weak evidence for alternative H1
K/10÷ K/3 Moderate evidence for alternative H1

< K/10 Strong evidence for alternative H1
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OR(y) classification table

Table: 3. Notations for a simulation study

Moderate, strong Weak Insignificant
OR(y) evidence for H0 evidence for H0 evidence for H0
categories OR(y) > 3K OR(y) ∈ [2K ; 3K ] OR(y) ∈ (K ; 2K )

Frequency m03(n) m02(n) m01(n)
Rel. freq. f03(n) f02(n) f01(n)

Insignificant Weak Moderate, strong
OR(y) evidence for H1 evidence for H1 evidence for H1
categories OR ∈ (K/2;K ) OR(y) ∈ [K/3;K/2] K/3 > OR(y)

Frequency m11(n) m12(n) m13(n)
Rel. freq. f11(n) f12(n) f13(n)
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Simulation study

p0 – admissible proportion of defective items; p1 – alternative proportion.
Producer’s risk α = 0.05, the consumer’s risk is β = 0.1, the constant
K = β/α = 2.
The threshold c = 0.08, the highest admissible proportion of defective
items. Population simulated:
U ∼ Bern(N, p1), 0 < p0 < p1,
prior density is reflecting p0,
large number M of n-size samples drawn. For each sample, the
posterior density obtained

explicitly or
J samples drawn from it.

Notations for the posterior distribution odds ratios OR(y) classification
according to Table 2 are presented in Table 3.
The class frequencies mij(n). The relative class frequencies
fij(n) = mij(n)/M, i = 0, 1, j = 1, 2, 3, are included in the tables 4, 5.
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Simple random sampling with replacement
The lot U values are simulated with Bern(N, p1), p1 = 0.06,N = 10 000;
p̂1 = 0.0583.

Table: 4. Choice of the sample size for a SRSWR sampling, p0 = 0.04,
M = 10 000

Sample size n 20 30 40 50 100 150

f03(n) 0.8921 0.9091 0.9150 0.9293 0.8717 0.9037
f02(n) 0.0825 0.0654 0.0561 0.0000 0.0632 0.0432
f01(n) 0.0208 0.0191 0.0221 0.0621 0.0530 0.0392
f11(n) 0.0046 0.0054 0.0052 0.0067 0.0070 0.0107
f12(n) 0.0000 0.0005 0.0011 0.0013 0.0045 0.0021
f13(n) 0.0000 0.0005 0.0005 0.0006 0.0006 0.0011

OR(y) > K 0.9954 0.9936 0.9932 0.9914 0.9879 0.9861
OR(y) < K 0.0046 0.0064 0.0068 0.0086 0.0121 0.0139
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Stratified simple random sampling with replacement

Table: 5. Choice of the sample size for a stratified SRWR sampling, p0 = 0.0408,
p1 = 0.1333, p̂1 = 0.1408, N = 10 000, M = 10 000

Sample size n 100 150 200 250 300

f03(n) 0.1962 0.0585 0.0175 0.0045 0.0006
f02(n) 0.0924 0.0382 0.0136 0.0053 0.0015
f01(n) 0.1999 0.1163 0.0527 0.0213 0.0069
f11(n) 0.2126 0.1803 0.1013 0.0538 0.0225
f12(n) 0.1026 0.1182 0.0874 0.0557 0.0286
f13(n) 0.1948 0.4874 0.7268 0.8591 0.9398

OR(y) > K 0.4885 0.2130 0.0838 0.0311 0.0090
OR(y) < K 0.5100 0.7859 0.9155 0.9186 0.9909
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Summary of the simulation results

1 The lots with the probability p1 of the item with the defectiveness
p1 << c are classified in Table 4 in favour of H0. The relative
frequencies f03(n) are increasing with an increasing sample size, the
suitable minimal sample size for hypothesis (8) testing can be found.

2 The lots with the probability p1 of a defective item p1 ≈ c show
different results. A high number of OR(y) is inconclusive (close to
K ): relative frequencies do not depend on the sample size for all
classes. Some of the lots with probability of defective items close to
the threshold level c are successfully tested in favour of H0.

3 For the lots with high probability p1 of the item being defective,
p1 >> c, as in Table 5, the null hypothesis in (8) may be rejected
and an alternative H1 not rejected. It means the lots are terribly
defective. The smallest sample size for decision H1 may be found.
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Conclusions and other approaches

Conclusions
1 Items in a lot received by the consumer should not be necessary

homogeneous.
2 Distribution for a proportion of defective items can be evaluated for

any probability sampling design for which posterior distribution of p is
available, and sample size needed can be found.

Ohter approaches

Application for real data.
Penalized spline probit model for p may be helpful
Asymmetric Wilson confidence interval for a proportion of defectives
can be estimated and sample size needed to get the upper bound of
the interval estimated (Valliant et al. 2018).
Application of unequal probability sampling design for accelerated life
time testing under various life time distributions for sample size
finding.
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Thank you!
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