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Motivating paper

Tzavidis et al. (2018) propose a three-stage framework for the
production of small area official statistics:

STAGE 1: specification
specify user needs
data availability and geographical coverage

STAGE 2: analysis & adaptation
initial triplet of estimates
use of models for small area estimation
model building

STAGE 3: evaluation
uncertainty assessment
method evaluation - design-based (or model-based)
simulation study
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Introduction

Table: Terms in survey sampling vs machine learning

survey sampling machine learning
auxiliary variable predictor
class of predictors predictive algorithm / prediction method

predictor prediction strategy
multivariate predictor joint prediction strategy



Introduction

Models:
parametric,
nonparametric.

Various predictive algorithms (predictors), e.g.:
BLUPs and EBLUPs,
BPs and EBPs,
PLUG-IN.

Ex-ante approach:
usage of various accuracy measures, e.g. prediction RMSE,
QAPE,
selection based on voting.



Introduction: proposal

WASP:

Voting-based
ex-Ante method

for Selecting
joint Prediction strategy



Introduction: proposal

Example of a voting matrix
for S voters choosing one of P candidates

candidate 1 candidate 2 . . . candidate P
voter 1 v11 v12 . . . v1P
voter 2 v21 v22 . . . v2P

. . . . . . . . . . . .
voter S vS1 vS2 . . . vSP



Introduction: proposal

Example of a matrix of values of accuracy measures
for P prediction strategies under S simulation scenarios

strategy 1 strategy 2 . . . strategy P
simulation scenario 1 r11 r12 . . . r1P
simulation scenario 2 r21 r22 . . . r2P

. . . . . . . . . . . .
simulation scenario S rS1 rS2 . . . rSP



Introduction: proposal

A method with the following features:
joint prediction of any vector of characteristics,
using a set of any ex-ante prediction accuracy measures,
utilizing any type of data (cross-sectional, longitudinal,
time-series),
considering various scenarios for out-of-sample data (also
not observed in the sample) defined by any class of
models (both parametric and nonparametric models can
be used simultaneously).
different proposals of selection criteria.

... to be used in any prediction problem (not only in survey
sampling).



Predicting a function of the response variable: input data

Two sets:

S of n sample observations
XS = [xij ]n×q - known, fixed
yS = [y1 y1 . . . yn]T - a realization of
YS = [Y1 Y1 . . . Yn]T

R of k out-of-sample observations
XR = [xij ]k×q - known or assumed, fixed
YR = [Y1 Y1 . . . Yk ]T - random with unknown
realizations

Let Y = [YT
S YT

R ]T and X = [XT
S XT

R ]T .



Predicting a function of the response variable:
models and prediction strategies

The aim: prediction of a vector of characteristics:

θθθ =
[
θ(1)(Y) θ(2)(Y) . . . θ(C)(Y)

]T
, (1)

where c = 1, ..., C .



Predicting a function of the response variable:
models and prediction strategies

An example of a regression model:
Y = h(X) + ξξξ

E (ξξξ) = 0
Var(ξξξ) = V

(2)

where h(.) is a fixed but unknown function of independent
variables, ξξξ is a random term with 0 mean and unknown
variance-covariance matrix V.



Predicting a function of the response variable:
models and prediction strategies

Special cases of (2) include e.g.:
the multiple regression model (Baltagi, 2021),
the linear mixed model (Jiang, 2007),
machine learning models (Hastie et al., 2009).



Predicting a function of the response variable:
models and prediction strategies

Ĥ (g)(.) - an estimator of h(.) based on gth model M(g)(Y, X).

ĥ(g)(.) - an estimate i.e. the realization of Ĥ (g)(.).

If the gth model is either parametric or nonparametric, the
estimates of h(.) will be denoted by ĥ(g)

PAR(.) or ĥ(g)
NPAR(.),

respectively.



Predicting a function of the response variable:
models and prediction strategies

The PLUG-IN of C characteristics (1) under the gth model:

θ̂θθ
(g)
PLUG−IN =[

θ̂
(g ,1)
PLUG−IN(YS) θ̂

(g ,2)
PLUG−IN(YS) . . . θ̂

(g ,C)
PLUG−IN(YS)

]T
, (3)

where

θ̂
(g ,c)
PLUG−IN = θ̂

(g ,c)
PLUG−IN(YS) = θ(c)

([
YS

Ĥ (g)(XR)

])
, (4)

Ĥ(.) is an estimator of h(.) (see (2)).



Predicting a function of the response variable:
two approaches to prediction accuracy
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Predicting a function of the response variable:
ex-ante prediction accuracy measures

The prediction error:

U = θ̂(YS) − θ(Y) = θ̂ − θ

The prediction RMSE:

RMSE (θ̂) =
√

E (θ̂ − θ)2 =
√

E (U2) (5)



Predicting a function of the response variable:
ex-ante prediction accuracy measures

The pth Quantile of Absolute Prediction Error (Żądło, 2013;
Wolny-Dominiak i Żądło, 2022):

QAPEp(θ̂) = inf
{
x : P

(∣∣∣θ̂ − θ
∣∣∣ ≤ x

)
≥ p

}
(6)

This measure informs that at least p100% of observed
absolute prediction errors are smaller than or equal to
QAPEp(θ̂), while at least (1 − p)100% of them are higher
than or equal to QAPEp(θ̂).

qape R package on CRAN: 13 000 downloads



Predicting a function of the response variable:
Bootstrap under parametric and nonparametric models

Generated bootstrap realizations of prediction errors:

Ugen = θ̂(ys gen) − θ(ygen), (7)
where ys gen and ygen, are generated sample and population
vectors of the dependent variable, respectively.



Predicting a function of the response variable:
Bootstrap under parametric and nonparametric models

Bootstrap under parametric model - the parametric bootstrap:

y(g ,b)
gen = ĥ(g)

PAR(X) + ξξξ(g ,b)
gen , (8)

where g = 1, . . . , G ; b = 1, . . . , B; ĥ(g)
PAR(.) is a parametric

estimate of h(.) obtained based on the original sample under
the assumption of the gth (here: parametric) model, ξξξ(g ,b)

gen is
a generated bth realisation of an error term from the estimated
parametric distribution assumed for ξξξ under the gth model.



Predicting a function of the response variable:
Bootstrap under parametric and nonparametric models

Bootstrap under nonparametric model (our proposal):

y(g ,b)
gen = ĥ(g)

NPAR(X) + ¯gen(b)(f̂ (r(g)
S ), (n + k)), (9)

where g = 1, . . . , G ; b = 1, . . . , B; ĥ(g)
NPAR(.) is a

nonparametric estimate of h(.) obtained based on the original
sample under the assumption of the gth (here: nonparametric)
model, f̂ (r(g)

S ) is a kernel density estimate of the distribution
of residuals r(g)

S computed under the gth model, and
¯gen(b)(f̂ (r(g)

S ), (n + k)) is a (n + k) × 1 zero centred vector of
values generated based on kernel estimate f̂ (r(g)

S ) in the bth
iteration.
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The proposed WASP method

Values of accuracy measures obtained in the simulation form a
matrix of size S × P, where:

S = G × C × M rows where G is the number of models
used to generate data, C is the number of predicted
characteristics, M is the number of considered accuracy
measures ("voters"),
P is the number of considered prediction strategies
("canditates").

It will be called the accuracy measures matrix, and it will
be denoted by A



The proposed WASP method: Algorithm 1

The first proposal: to mimic the first-past-the-post voting
system (Felsenthal, 2012), where voters choose a single
candidate, and the candidate with the highest number of votes
wins the election.



The proposed WASP method: Algorithm 1

Algorithm 1 The proposed first-past-the-post voting algorithm of
the prediction strategy selection

The input is an accuracy measure matrix A.
1: for s in 1:S do
2: In the sth row of A, assign rank 1 for the prediction strategy

with the minimum value of mth accuracy measure and rank 0
for the rest of the strategies.

3: end for
4: Write the resulting ranks as a voting matrix W1 with S rows

and P columns.
5: Compute column sums of the ranks for each out of P potential

prediction strategies.
6: The prediction strategy with the highest sum is chosen.



The proposed WASP method: Algorithm 1

-3cm
Table: Accuracy measures matrix A - the short form

voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6
M1, θ1, RMSE 30,409.52 92,010.24 30,525.97 67,948.94 75,471.81 91,967.10

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, RMSE 33,892.15 82,222.11 33,973.64 79,599.19 78,954.10 82,234.57
M1, θ2, RMSE 916.26 548.11 916.13 413.71 613.53 508.82

. . . . . . . . . . . . . . . . . . . . .

Table: First-past-the-post voting matrix W1 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 1 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 1 0 0 0 0 0
M1, θ2, RMSE 0 0 0 1 0 0

. . . . . . . . . . . . . . . . . . . . .
sum 14 5 7 3 1 6



The proposed WASP method: Algorithm 2

The second proposal: to mimic the Borda count system, which
belongs to positional voting procedures (Felsenthal and
Machover, 2012), where voters order candidates from the
worst to the best, and in the original Borda count algorithm,
the candidate with the highest sum/mean of points is elected.
In our proposal we choose candidate with the highest median
because ranks are measured on the ordinal scale.



The proposed WASP method: Algorithm 2

The usage of positional voting system (Felsenthal and
Machover, 2012):

in elections of the president of the Republic of Ireland,
elections to the Australian House of Representatives,
and some municipal elections in the United States.



The proposed WASP method: Algorithm 2

Algorithm 2 The proposed positional voting algorithm of the pre-
diction strategy selection

The input is an accuracy measure matrix A.
1: for s in 1:S do
2: In the sth row of A, rank prediction strategies according to

the values of the mth accuracy measure from 1 (the maximum
value in this row) to P (the minimum value in this row).

3: end for
4: Write resulting ranks as a voting matrix W1 with S rows and P

columns.
5: Compute the median of ranks for each out of P prediction strate-

gies.
6: The prediction strategy with the highest median rank is chosen.



The proposed WASP method - Algorithm 2
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Table: Accuracy measures matrix A - the short form

voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6
M1, θ1, RMSE 30,409.52 92,010.24 30,525.97 67,948.94 75,471.81 91,967.10

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, RMSE 33,892.15 82,222.11 33,973.64 79,599.19 78,954.10 82,234.57
M1, θ2, RMSE 916.26 548.11 916.13 413.71 613.53 508.82

. . . . . . . . . . . . . . . . . . . . .

Table: Positional voting matrix W2 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 6 1 5 4 3 2
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 6 2 5 3 4 1
M1, θ2, RMSE 1 4 2 6 3 5

. . . . . . . . . . . . . . . . . . . . .
median 5 4 4 3 3 3



The proposed WASP method: Algorithm 3

The third proposal: inspired by
evaluative voting, also called utilitarian voting (Baujard
et al. (2014)
and Majority Judgement (Balinski and Laraki, 2007).



The proposed WASP method: Algorithm 3

In evaluative voting, each voter evaluates all candidates by
assigning an ordinal grade that reflects their suitability (the
better the candidate the higher the grade). Hence, the same
grade can be given to several candidates. The candidate with
the highest total/mean grade is the winner.

The procedure of the Majority Judgement is similar but the
highest median grade is the rule to choose the candidate.



The proposed WASP method: Algorithm 3

In our approach the assessment is based on scaled accuracy
measures (on a ratio scale) ...
... not based on the ranks (on the ordinal scale) as in the
evaluating/utilitarian voting.



The proposed WASP method: Algorithm 3

Scaled values of accuracy measures:

a′ = 1 − a, (10)

where a is a rescaled value (min-max normalization) of the
considered accuracy measure.

Hence, a′ ∈ [0, 1] and the higher the value of (10), the better
is accuracy.



The proposed WASP method: Algorithm 3

Algorithm 3 The proposed evaluative voting algorithm of the pre-
diction strategy selection

The input is an accuracy measure matrix A.
1: for s in 1:S do
2: In the sth row of A, scale the values of the mth accuracy

measure applying formula (10) to obtain P-values from interval
[0, 1].

3: end for
4: Write resulting values as a matrix W3 with S rows and P

columns (called the voting matrix).
5: Compute the median of scaled values for each out of P predic-

tion strategies.
6: the prediction strategy with the highest median value is chosen.



The proposed WASP method: Algorithm 3
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Table: Accuracy measures matrix A - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 30,409.52 92,010.24 30,525.97 67,948.94 75,471.81 91,967.10
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 33,892.15 82,222.11 33,973.64 79,599.19 78,954.10 82,234.57
M1, θ2, RMSE 916.26 548.11 916.13 413.71 613.53 508.82

. . . . . . . . . . . . . . . . . . . . .

Table: Scaled voting matrix W3 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 1.000 0.000 0.998 0.391 0.268 0.001
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 1.000 0.000 0.998 0.055 0.068 0.000
M1, θ2, RMSE 0.000 0.733 0.000 1.000 0.602 0.811

. . . . . . . . . . . . . . . . . . . . .
median 0.999 0.454 0.997 0.650 0.318 0.401

W3 will be used in the Algorithm 4 too ...



The proposed WASP method: Algorithm 4

The drawback of Algorithm 3 - it only considers the median of
the results in the selection process, not the whole distribution.

Hence, our fourth proposal ...



The proposed WASP method: Algorithm 4

Algorithm 4 The proposed ECDF AUC-based voting algorithm of
the prediction strategy selection

The input is an accuracy measure matrix A.
1: for s in 1:S do
2: In the sth row of A, scale the values of the mth accuracy

measure applying formula (10) to obtain P-values from interval
[0, 1].

3: end for
4: Write resulting values as a matrix W3 with S rows and P

columns (called the voting matrix).
5: Based on the values in the pth column, compute the ECDF for

the scaled voting results obtained for the pth prediction strategy
(where p = 1, 1, . . . , P).

6: The prediction strategy with the smallest value of the area under
the ECDF in interval [0, 1] is chosen.



The proposed WASP method: Algorithm 4
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Table: Scaled voting matrix W3 - the short form

voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6
M1, θ1, RMSE 1.000 0.000 0.998 0.391 0.268 0.001

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, RMSE 1.000 0.000 0.998 0.055 0.068 0.000
M1, θ2, RMSE 0.000 0.733 0.000 1.000 0.602 0.811

. . . . . . . . . . . . . . . . . . . . .
ECDF ECDF 1 ECDF 2 ECDF 3 ECDF 4 ECDF 5 ECDF 6

AUC in [0, 1] 0.338 0.506 0.346 0.439 0.655 0.550



Automobile portfolio example

Input data - the portfolio from Polish insurance company for full
2007-2010 years (exposure = 1).
The longitudinal structure of data - each ith policy corresponds to
the aggregate value of claims for single policy Claim_Amount and
risk factors:

Gender - category: 1 (Female), 0 (Male)
Kind_of_distr - kind of district: urban, country, suburban
Kind_of_payment - category: cash, transfer
Engine - category: BEN, DIS
Age_group - category: 1, 2, 3.

Two key characteristics describing the portfolio of policies: total
value of claims θ(1), the median of claims θ(2).



Automobile portfolio example
The joint prediction of characteristics θ(1) and θ(2) with WASP - assumptions:
1. First assumption - how to obtain ‘true’ claims values

parametric MPAR : GLM Gamma (GG), log-normal regression (LogN),
GAM
non-parametric MNPAR : decision tree (DT), SVM with linear kernel
(SVML), SVM with polynomial kernel (SVMP)

2. Second assumption - which predictive models
3. Third assumption - which prediction algorithm for every predictive model

Table: Description of candidate prediction strategies

Strategy Predictive model Prediction algorithm
strategy 1 GG PLUG-IN
strategy 2 LogN PLUG-IN
strategy 3 GAM PLUG-IN
strategy 4 DT PLUG-IN
strategy 5 SVML PLUG-IN
strategy 6 SVMP PLUG-IN

4. Fourth assumption - the criteria for selecting a prediction strategy: RMSE ,
QAPE0.5 and QAPE0.95



Automobile portfolio example

Monte Carlo simulation to estimate ex-ante accuracy measures
(5000 iterations) - single bth iteration stages:

generating real values of the variable of Claim_Amount under
6 assumed ’true’ models M(1), ..., M(6),
calculating characteristics θ(1) and θ(2) for every generated
"true" Claim_Amount,
predicting characteristics θ(1) and θ(2) under 6 assumed
models M(1), ..., M(6),
calculating measures of ex ante prediction accuracy: RMSE ,
QAPE0.5, QAPE0.95.

In result, we obtain accuracy measures matrix A with 36 rows, as
we involve 2 characteristics, 6 models and 3 accuracy measures.



Automobile portfolio example
VOTING results
Four voting systems - the initiating step is to perform some
transformation of the matrix A to the voting matrix W and then
pointing the winner according to presented algorithms.

Values of selection criteria for four voting systems

Prediction
strategy

FPTP Positional Evaluative ECDF
AUC

strategy 1 14 5 0.999 0.338
strategy 2 5 4 0.454 0.506
strategy 3 7 4 0.997 0.346
strategy 4 3 3 0.650 0.439
strategy 5 1 3 0.318 0.655
strategy 6 6 3 0.401 0.550

(a) sum of votes (the higher the better), (b) median of ranks (the higher
the better), (c) median of scaled accuracy measures (the higher the

better), (d) ECDF AUC (the smaller the better)



Automobile portfolio example: VOTING with ECDF AUC
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Automobile portfolio example

Summing up, strategy 1 is the winner in all voting systems. This
means that the joint prediction of θ(1) and θ(2) should be
performed using the GLM-Gamma model.

The prediction for 2011 amounts to
θ̂(1) = 231, 583.16 and θ̂(2) = 3, 141.69.

Obtained assessments for the ’true’ model GG

Accuracy Measure θ(1) θ(2)
RMSE 30,409.52 916.26

QAPE0.5 20,337.75 829.49
QAPE0.95 60,198.47 1,481.50



WASP METHOD
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APPENDIX



Accuracy measures matrix A- the short form

-3cm
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 30,409.52 92,010.24 30,525.97 67,948.94 75,471.81 91,967.10
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 33,892.15 82,222.11 33,973.64 79,599.19 78,954.10 82,234.57
M1, θ2, RMSE 916.26 548.11 916.13 413.71 613.53 508.82

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, RMSE 1,061.72 350.82 1,062.28 360.62 531.79 325.74

M1, θ1, QAPE0.5 20,337.75 86,634.24 20,583.34 60,212.39 62,486.63 87,039.66
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, QAPE0.5 23,137.12 74,980.98 23,372.24 72,309.64 67,400.49 74,869.13
M1, θ2, QAPE0.5 829.49 388.74 828.17 280.48 415.84 351.43

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.5 999.68 228.70 998.64 239.17 356.18 211.63
M1, θ1, QAPE0.95 60,198.47 135,643.60 60,587.21 112,127.20 132,336.46 133,635.47

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, QAPE0.95 66,258.19 129,184.87 66,403.74 126,818.35 136,122.08 127,664.58
M1, θ2QAPE0.95 1,481.50 1,051.47 1,479.56 808.35 1,201.03 984.06

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.95 1,603.75 693.73 1,606.65 716.80 1,047.93 647.50



First-past-the-post voting matrix W1 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 1 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 1 0 0 0 0 0
M1, θ2, RMSE 0 0 0 1 0 0

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, RMSE 0 0 0 0 0 1

M1, θ1, QAPE0.5 1 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, QAPE0.5 1 0 0 0 0 0
M1, θ2, QAPE0.5 0 0 0 1 0 0

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.5 0 0 0 0 0 1
M1, θ1, QAPE0.95 1 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, QAPE0.95 0 0 1 0 0 0
M1, θ2QAPE0.95 1 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.95 0 0 0 0 0 1

sum 14 5 7 3 1 6



Positional voting matrix W2 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 6 1 5 4 3 2
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 6 2 5 3 4 1
M1, θ2, RMSE 1 4 2 6 3 5

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, RMSE 2 5 1 4 3 6

M1, θ1, QAPE0.5 6 2 5 4 3 1
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, QAPE0.5 6 1 5 3 4 2
M1, θ2, QAPE0.5 1 4 2 6 3 5

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.5 1 5 2 4 3 6
M1, θ1, QAPE0.95 6 1 5 4 3 2

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, QAPE0.95 6 2 5 4 1 3
M1, θ2QAPE0.95 1 4 2 6 3 5

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.95 2 5 1 4 3 6

median 5 4 4 3 3 3



Scaled voting matrix W3 - the short form
voter strat 1 strat 2 strat 3 strat 4 strat 5 strat 6

M1, θ1, RMSE 1.000 0.000 0.998 0.391 0.268 0.001
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, RMSE 1.000 0.000 0.998 0.055 0.068 0.000
M1, θ2, RMSE 0.000 0.733 0.000 1.000 0.602 0.811

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, RMSE 0.001 0.966 0.000 0.953 0.720 1.000

M1, θ1, QAPE0.5 1.000 0.006 0.996 0.402 0.368 0.000
. . . . . . . . . . . . . . . . . . . . .

M6, θ1, QAPE0.5 1.000 0.000 0.995 0.052 0.146 0.002
M1, θ2, QAPE0.5 0.000 0.803 0.002 1.000 0.753 0.871

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.5 0.000 0.978 0.001 0.965 0.817 1.000
M1, θ1, QAPE0.95 1.000 0.000 0.995 0.312 0.044 0.027

. . . . . . . . . . . . . . . . . . . . .
M6, θ1, QAPE0.95 1.000 0.099 0.998 0.133 0.000 0.121
M1, θ2QAPE0.95 0.000 0.639 0.003 1.000 0.417 0.739

. . . . . . . . . . . . . . . . . . . . .
M6, θ2, QAPE0.95 0.003 0.952 0.000 0.928 0.583 1.000

median 0.999 0.454 0.997 0.650 0.318 0.401



Automobile portfolio example
-3cm
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