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" A similar problem in causal analysis (matching/balancing)



Calibration

A long-standing problem in population surveys & official statistics
Auziliary information: known population totals of some variables

Calibration: adjusting the sampling weights so that:

e weighted sample totals agree with the known population totals
e total of the sample weights stays the same
e the weights are changed as little as possible

e the weights are not too dispersed (efficiency)

Hard calibration: no leeway for any discrepancies

Soft calibration: thresholds for the discrepancies



Solutions; old and new

Raking for discrete variables:
— Iteratively adjust the weights for one variable at a time

Quadratic programming: optimisation constrained by the thresholds

Problem: solution may not exist or may be unsatisfactory
Solution: discard some variables, change some thresholds

— mprowvise with a black box

Proposal: replace tresholds/constraints with penalties
— simplicity: noniterative solution/algorithm
— transparency: properties are easy to study/explore

— optimality in a well-defined sense



Notation and formalities

A realised population survey:
— focal variable y (valuesy), weights w  (estimator 0 = w ' y)
— other variables, vector x = (zg=1, x1,...,Tx);
— data matrix X |[n x (K +1)]
— population totals, vector t = (tg = N,t1,...,t5);

Calibration: adjusted weights u = C(w; X, t),
6 =] X'u—t=0 =X ju—t,=0, 0<k<K

. le.,

subject to small ||[u — wl|

small var(u)

E.g., thresholds D; > 0 on the discrepancies; |01 | < Dy



Motivation. Thresholds — penalties

Replace the constraints 52 < D%
with a single constraint 58 + 5% + -0+ 5%( < D.

Minimise
K
> mop (=P
k=0

subject to constraints on efficiency and small change (u — w) ' (

u-—w)

Priorities pr., 0 < k < K to be set.
Next: minimise

K
Flu;w) = E pk5]%+R(u —w) (u—w)+S <uTu— luTllTu>
n
k=0



Unconstrained optimisation

Invariance ... we can assume that R+ 5 = 1.

Quadratic objective function
Fluyw) = u' Hu—2u's+ E,
where

H - I, + XPX'

t
s = Rw+(1—R)21,+ XPt.
T

Minimum: u* = H ls

. F(u;w) = E—s'H ls.

Minimum always exists and has a closed form.

setting P = diag(p.) and R (tuning parameters)



H~! and a link to ridge regression

H =1+ L, where I is easy to invert and rank(L) < K +1

1 —1
(I + XPXT) _1-X (P—1 + XTX) X T

5] (PexTx) Xy

— affinity with (generalised) ridge regression

Alternative: A recursive algorithm for evaluating H™1s,

— operating only with vectors of length n

Estimator of the population total:

f(u; R) = (1—3){1 f0y +tTB}+Rw (y—XB)

+ npo




Properties of §.(P, R)

k 2w | tr—1
—2 = 92X,  H X;. <0
@pk k <>k k

— large 5]% is easy to reduce; small 5]% is difficult to reduce

— do not try to wipe out the last bit of discrepancy

Dp _ T to

— linear dependence on R
Simple micro-management of individual 9;.

Examples and simulations:

— easy control of the discrepancies 0;.
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Summary

Calibration as a routine operation
— with a unique closed-form solution
— that reflects the perspectives, judgements and priorities

— easy control of the discrepancies

Old: Include/exclude in calibration

New: Set priorities for calibration; use all available information

Analytical connection with balancing in causal analysis:

— matching the means of group A with weighted means of group B

Thank you — Dziekuje bardzo. Questions? — Pytania?
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