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!! A similar problem in causal analysis (matching/balancing)
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Calibration

A long-standing problem in population surveys & official statistics

Auxiliary information: known population totals of some variables

Calibration: adjusting the sampling weights so that:

• weighted sample totals agree with the known population totals

• total of the sample weights stays the same

• the weights are changed as little as possible

• the weights are not too dispersed (efficiency)

Hard calibration: no leeway for any discrepancies

Soft calibration: thresholds for the discrepancies
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Solutions; old and new

Raking for discrete variables:

— Iteratively adjust the weights for one variable at a time

Quadratic programming: optimisation constrained by the thresholds

Problem: solution may not exist or may be unsatisfactory

Solution: discard some variables, change some thresholds

— improvise with a black box

Proposal: replace tresholds/constraints with penalties

— simplicity: noniterative solution/algorithm

— transparency: properties are easy to study/explore

— optimality in a well-defined sense
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Notation and formalities

A realised population survey:

— focal variable y (values y), weights w (estimator θ̂ = w⊤y)

— other variables, vector x = (x0 = 1, x1 , . . . , xK);

— data matrix X [n× (K + 1)]

— population totals, vector t = (t0 = N, t1 , . . . , tK);

Calibration: adjusted weights u = C(w;X, t),

[δ = ] X⊤u− t
.
= 0, i.e., δk = X⊤

k u− tk
.
= 0, 0 ≤ k ≤ K

subject to small ||u−w||

small var(u)

E.g., thresholds Dk ≥ 0 on the discrepancies; | δk | ≤ Dk
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Motivation. Thresholds → penalties

Replace the constraints δ2k ≤ D2
k

with a single constraint δ20 + δ21 + · · · + δ2K ≤ D .

Minimise
K
∑

k=0

pk δ
2
k

(

= δ⊤Pδ
)

subject to constraints on efficiency and small change (u−w)⊤(u−w)

Priorities pk , 0 ≤ k ≤ K to be set.

Next: minimise

F (u;w) =

K
∑

k=0

pk δ
2
k + R (u−w)⊤(u−w) + S

(

u⊤u−
1

n
u⊤11⊤u

)
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Unconstrained optimisation

Invariance . . . we can assume that R + S = 1.

Quadratic objective function

F (u;w) = u⊤Hu− 2u⊤s + E ,

where

H = In +XPX⊤

s = Rw + (1− R)
t0

n
1n +XPt .

Minimum: u∗ = H−1s; F (u∗;w) = E − s⊤H−1s.

Minimum always exists and has a closed form.

. . . setting P = diag(pk) and R (tuning parameters)
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H−1 and a link to ridge regression

H = I + L, where I is easy to invert and rank(L) ≤ K + 1
(

I +XPX⊤
)−1

= I−X
(

P−1 +X⊤X
)−1

X⊤

[

β̂ =
] (

P−1 +X⊤X
)−1

X⊤y

— affinity with (generalised) ridge regression

Alternative: A recursive algorithm for evaluating H−1s,

— operating only with vectors of length n

Estimator of the population total:

θ̂(u;R) = (1− R)

{

t0 ȳ

1 + np0
+ t⊤β̂

}

+Rw
(

y−Xβ̂
)
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Properties of δk(P, R)

∂δ2k
∂pk

= −2δ2kX
⊤
k H

−1Xk < 0

— large δ2k is easy to reduce; small δ2k is difficult to reduce

— do not try to wipe out the last bit of discrepancy

∂δk
∂R

= X⊤
k H

−1
(

w−
t0

n
1n

)

— linear dependence on R

Simple micro-management of individual δk

Examples and simulations:

— easy control of the discrepancies δk
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Summary

Calibration as a routine operation

— with a unique closed-form solution

— that reflects the perspectives, judgements and priorities

— easy control of the discrepancies

Old: Include/exclude in calibration

New: Set priorities for calibration; use all available information

Analytical connection with balancing in causal analysis:

— matching the means of group A with weighted means of group B

Thank you — Dziȩkujȩ bardzo. Questions? — Pytania?
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