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Continuous sampling design according to Cordy

(1993)

Let the population U C R. The sample space, denoted by

S, = U", is the set of ordered samples denoted by
X=(xq,...,Xn), Xk € U, k =1, ..., n, where x is the outcome of
the variable observed in the k-th draw. Let x be a value of the
n-dimensional random variable X = (Xj, ..., X,) with the
sampling design density function f(x) = f(xi, ..., X»). Let fi(x)
and f; j(x, x"), x € U, x' € U, be marginal density functions of X;
and (X, X;), respectively, j > i =1, ..., n. The inclusion func.:

n n n
)= _fi(x), w(x,x)=>_ Y fijxx), xeUxeU
i=1

i=1 j=1,j#i
(1)
and [, m(x)dx = n, [, [, 7(x,x)axdx" = n(n—1).
n
F(Xns ooos Xi Xict s X1) = F0x0) [ ] F(XilXio1, Xiz2s oo X1) (2)
=2



Continuous version of Horvitz-Thompson statistic

The estimated parameter: 6 = [, g(x)dx.

- 9(X)
=> 2% 3)

Theorem 1. [Cordy (1993)] The statistic Tx is an unbiased
estimator for 6, if the function g(x) is either bounded or
non-negative, and 7(x) > 0 for each x € U.

Theorem 2 [Cordy (1993)] If the function g(x) is bounded,
m(x) > 0 for each x € U, and [,(1/7(x))dx < oo, then

) = [, S |, otatr ™G e

Cordy (1993) also proposed the unbiased estimator of this

variance.
Moreover, in the case of simple random sample X = %2221 Xk
is particular case of Ty.




Estimation using auxiliary variable

Let h(x, y), (x,y) € U C R?, be the density function. The
marginal densities are: hy(x) and ha(y).
h(y|x) = h(x.y)/hi(X). ny = E(Y) = |23 yha(y)dy.
px = E(X) = [Z7 xhi(x)dx, E(Y|x) = [Z7 yh(y|x)dy,
V(YIx) = [Z3(y = E(Y[x))?h(y|x)dy.
Our purpose is estimation of parameter § where
0=ny= [ gtax= [ [ yniyiom@aday @

where:

9() = E(YI)m () = () [ Tyhyody. )



Estimation using auxiliary variable

We replace g(X) = E(Y|X)hi(X) with Yh{(X) in the definition
of Tx. This leads to the following estimator of s :

-3 00 .

We set:

(y‘ ) (}/h-'-,}/n’Xh---,Xn):Hh(}’i‘xi) (7)




Estimation using auxiliary variable

Theorem 3[Wywial (2020)] If E(Y) < oo and 7(x) > 0 for all
(x,y) € U and assumption (7) holds, then E (Txy) = py.

Theorem 4[Wywial (2020)] If the function E(Y') is bounded,
m(y) > 0 for each (x,y) € U, and [,(1/7(y))dy < oo, then

V(Tx,v)—/UV(Y:(())(f)ﬁ(x)der/UEz(:‘z()g)mz(x)derA (8)

where
m(x, x") —a(xX)w(X)
A= //E Y|x)hi (x)E(Y|x")hy (X)) (X)) dxdx
7(x, x") ,
A= //E Y|x)hi(x)E(Y|x")hy(X") (X)W(X,)dxdx — E2(Y).



Estimation using auxiliary variable

Cox and Snell (1979) conditions

The density function of the sampling design is known:

f(X1,...,Xn) = fo, f(x;) _)(if;l)(()(i), m(x) = nf(x;). (9)

The estimated density func. of the sampl. design is known:

n ~ ~
F(x) = £(X1, .o, Xn, 01..0,) = T] 7(xi). xh1()1(0,)
i=1
(10)
This and equation (6) lead to:
Tay=Ya=" in- (11)

i€es



Estimation using auxiliary variable

Cox and Snell (1979) conditions

The uniform kernel estimator of hy(x) leads to the following
estimator of f(x) (Wywial (2020)):

N X

> wi f wn XEK—AXx+A
=N wili(x, X, A), Fi(x,x,A) = { XD € [xi— A xi+ 4],

=1 0, x¢[x—Ax+A4]

where A > 0 is the bandwidth parameter and w; = 7.

X N
Foo = [ fnat =" whi(x.x. ), (12)
i=1

x=F'(u) = \Jaxau+ (x - A2, ze[o:1]  (13)

where u has uniform distribution on interval [0; 1]. This let us
easy generate the pseudovalues on interval [x; — A; x; + A].



Estimation using auxiliary variable

Sampling scheme. Algorithm A

@ Purpose: selection of sample xs = [x1, ..., X, .., Xp] from
dyo = [X1, -y Xk, ooy XN];

@ values of vector x5 = [x{, ..., X,] are generated by means of
quantile functions x’ = F~1(u), where u is the value of the
uniformly distributed variable on [0; 1] and

ﬁ(x)—/x f(t)at, ?(X)—W (14)

@ elements of xs are selected from x according to

Xk =arg min |X; — xg|. (15)
j=

=1,



Estimation using auxiliary variable

Sampling scheme. Algorithm B

@ In Algorithm I, the function #(x), F(x) is replaced by
f(x),F(x), respectively:

N X
- . . - — A X+ A]
f(x) = Z wifi(x, x;, D), fi(x,x;, A) = A [Xi ;X + A,
P 0, x & [xi — A; x;+ A,
~ X ~ N ~
F(x) = / f(yat = wiFi(x,x,A), A>0;
> =1

@ Select x; with probability oc w; = #;

next: x/ =F'(u)= \/4x,-Au+ (xi— A2, uel0;1]

where u has uniform distribution on interval [0; 1];
@ the elements of xs are selected from d,g according to

.....



The case of McKay'’s bivariate gamma distribution

Let U;, i = 0,1, have gamma distributions with densities:

0
(o U0,71 e CUi (16)

li(ui) = li(ui, 0;, ¢) = ro) "

The joint distribution of (X, Y) where X = Uy + Uy, Y = Uy has
density function (see McKay (1934)):

cfo+04
[(60)T(61)

I(x,y) = yolx—y)lem™ x>y>0. (17)




The case of McKay'’s bivariate gamma distribution

We estimate py, = %0 by means the sampling design:
n
Xihi (x;) ottt i —ox
f(x)=117#x). fix)="2= = o+t g—0Xi
(X) H (XI)7 (XI) Lix r(00+91 +1)X/ e

i=1
In this case (Wywial (2020)):
V(Yr) 01

ff(Yg) = — =~ = 1.
YR = Vo) ~ v o+~

V(¥R) can be estimated by means of the following statistics:

A 1~ . 42

V(Yg,f(x)) = =Ygr(Xx - Y, X . 18

(Ya, f(x)) = —Ya( R)1+,y)2( (18)
Bootstrap-type estimators of variance:

(5 | S0 5\ gl Xxm Y
v (V) =g 2 (W)= Ya) . V=03 S (19)




Hypothesis and test statistics

Ho : my = pyo,  Hi: py = py1 > pyo. (20)

test statistics based on studentized versions of mean value
estimators:

Te— Ys—Mo\f o Ys — 1o Fo_ Ys — 1o 1)

0 N AN T X

where Vs(Y) =Y cs(Yi— Ys)?/(n—1), Yo =3 ;s Yi/n.




Testing strategies

@ The pair (testing strategy) (Ts, ?(x)) is based on the
statistic Ts from sample selected by means of sampling
scheme explained by Algorithm A where the estimator f(x)

of the density function f(x) is used;

@ The strategy (Ts, f(x)) is based on the statistic T from
sample selected by mean of sampling scheme explained
by Algorithm B where sampling the kernel estimator f(x) of
the density function f(x) is used,;

@ (Ts, ho(y)) is the simple random sample selected from
distribution of variable under study Y which density
function hy(y) is the marginal distribution of (X, Y)
explained by density: h(x, y).



Bootstr. significant test strategy (Ts, f(x)). Algorithm 1

dyo = {X1, ..., Xy} observations of an auiniarAy varigble
distributed according density function hy(x, 61, ...,0;);

1. Sample s = ((x1,¥1), ..., (Xn, ¥n)) is selected from dyg
according to Algorithm A;

2. Evaluate test statistic t; given by (21);

4. Draw the bootstrap samples of size n denoted by

5 = (X1, 1), (xn, yn);) from s, j = 1,..., B > 1000;

}’sj—}/s . &< . . i
\/m,j =1,...,B, V(Ys) is given by (18);
6. Evaluate the critical value: #s(«) as the sample quantile of
order 1 — « on the basis of sequence (tsj <t /=1, B);
7. Calculate the empirical p-value according to

o 1 B ) S — 1S
[)—fg - . I(ts) where I(1g) = J ~
B ( 5/) ( 5/) {0, if tsj < ts;

5. Calculate fs, =




Bootstr. significant test strategy ( Ts, f(x)). Algorithm 2

1. Select sample s according to Algorithm B;

2. Draw the bootstrap samples of size n denoted by

Sj = ((X1, Y1) --» (XN, ¥n)j) from s, j =1, ..., B> 1000;

3. Evaluate statistics: js; according to the expression (11),

f=1,...B;
4. Calculate s according to (21) where V/ (VS> is given by (19);
6. Select bootstr. sampl Si of size nfrom S, j, k=1, ..., B;

. V. L N\2
7. Evaluate: T = m V(Vs) = g 28 1<Ysjk Ysj) ,

YS/ = XZIES X’ S]k = XZ/eSk X’

8. Evaluate the critical value: #s(a) as the sample quantile of
order 1 — a on the basis of sequence (5 < ts,,,j=1,..., B);
9. Calculate the empirical p-value according to

i . 1,if 1, >1
=158 1) where I(fs) = ¢ 27
pP=35 Z/=1 ( S/) ( s/) 0, if tsj < ts;



Power simulation of (Ts, ho(y)). Algorithm 3

Let di = (y4, ...yn) be population when hypot. H; is true, i = 0, 1;
1. Draw the simple random sample: s = (y1, ..., ¥n) from dp;
. Evaluate test statistic ts given by (21);

2

3. Select the boots_trar_) samples: s; = (yff), ...,y,(,j)) from s;
4. Evaluate t5; = mﬁ,j: 1,...,B;
5
6

/Vs.(Y)
)
. Let ts(«) be the (1 — «) quantile from (ts,,j = 1,..., B);
Repeat 1-5 A- tlmes for evaluate critical value:

Ts(0) = % %4 £9(a);

7. Draw the S|mple s=(,..., ¥n) from the set d;
8. Select the bootstrap samplgs Sj = (y1( ),. ,y,(/)) from s;

10. Evaluate statistics: t, = ~2—2/n, j =1, ..., B;
/ \/ VSj(Y)

11. Asses the power according to 3 = - j'; /(tgj) where
1,if > ts5(a),
() = { Ly ts(a)
0,if t5 < ts(a).
e 4 4444




Power simulation of (Ts, f(x)). Algorithm 4

1. Generate population data d; = ((x1, Y1), ---, (Xn, ¥n)), i = 0, 1
according to the density h(x, y, 6o, ..., 0;);

2. Repeat A-times steps 1-6 of the algorithm 1 in order to
evaluate the mean critical value: t(a) = % Y r_ k();

3. Select sample s = ((x1, Y1), ---, (Xn, ¥n)) from d; according to
Algorithm A;

4. Draw samples s, ((x1,y1) (XN, yn)j) from s, j=1,..., B;

j_ 1,..., B, V( YS/) is given by (18);

5. Calculate 15, =

T

6. Calculate: § = ZB: (?s,-) where
. 1,if 1 >1
(ts/) — . S] ( )
0, if ts < t( )-
7. Repeat A- tlmes steps 3-6 and asses the mean power

B = Zk:1 Bk-

-~



Power simulation of (Ts, f(x)). Algorithm 5

1. Generate population data d; = ((x1, Y1), -, (Xn, ¥n)), i = 0,1
according to the density h(x, y, 0o, ..., 0r);

2. Repeat A-times steps 1-8 of the algorithm 2 in order to
evaluate the mean critical value: t(a) = & S r_; k();

3. Select sample s = ((x1, 1), ..., (Xn, ¥n)) from d; according to
Algorithm B;

4. Draw samples s; = ((x1, 1)}, ---, (Xn, ¥n)j) from s, j =1, ..., B;

T JgHo IV R .
5. Calculate ts5;, = 7\/7%,)] 1,..., B, V(Ys) is given by (19);

6. Calculate: 5 = £ Y°7, I(T) where
- {1,# T, > 1(a),

—
2
ot

0,if 15 < t(a).

i
7. Repeat A-times steps 3-6 and asses the mean power
p= % lei‘:1 Bk-



Results of the simulation analysis

>

Hy - uy:uyoz?():‘lo, Hi - /,Ly:uy1>uy0,r:0.95.

>

/

Hy @y =pyo =3 =20, Hi: py = py1 > pyo,
r=20.75r =0.85.




Results of the simulation analysis Hj

The significant level: « = 0.05

H1 Alg_3 Alg_4r=0.95
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.23 | 0.23 | 0.27 | 0.58 | 0.51 0.68
1.05my | 0.26 | 0.42 | 044 |0.77 |0.88 | 0.97
1.075mp| 0.38 | 0.4 062 (093 |099 |1

1.1my [ 054 | 0.66 |0.79 | 0.98 1 1
1.15mg | 0.7 0.91 0.97 | 0.99 1 1
1.2my | 0.9 0.98 1 1 1 1

Table 1. Power of the bootstrap test.Source: own calculations.




Results of the simulation analysis Hj

The significant level: « = 0.1

H1 Alg_3 Alg_4r=0.95
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.32 | 0.32 |0.37 |0.67 |0.62 |O0.77
1.05my [ 0.35 | 052 |054 |0.84 |093 |0.97

1.075mp| 0.48 | 0.5 0.71 0.96 1 1
1.1mg [0.74 | 0.75 |0.86 | 0.99 1 1
1.15mp | 0.79 | 0.94 | 0.99 1 1 1
1.2my | 0.94 | 0.99 1 1 1 1

Table 2. Power of the bootstrap test.Source: own calculations.




Results of the simulation analysis Hj

The significant level: « = 0.2

H1 Alg_3 Alg_4r=0.95
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mq 0.44 | 043 | 049 |0.78 |0.73 | 0.86
1.05mp | 046 |0.64 |0.66 |0.89 |0.96 | 0.99

1.075mp| 0.6 0.62 | 0.81 0.98 1 1
1.1mg [0.75 | 0.83 |0.92 | 0.99 1 1
1.15mp | 0.86 | 0.97 | 0.99 1 1 1
1.2my | 0.97 | 0.99 1 1 1 1

Table 3. Power of the bootstrap test.Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.05

H1 Alg_4r=0.85 Alg_4r=0.75
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.32 | 0.4 027 |[024 |024 |043
1.05my [ 043 | 0.65 |086 |0.46 |0.62 |O0.73
1.075mp| 0.69 | 0.94 | 099 | 057 |0.84 |0.87

1.1mg | 0.92 | 0.98 1 0.78 |0.98 |0.93
1.15mgp | 0.97 | 1 1 0.93 1 1
1.2my | 1 1 1 1 1 1

Table 4. Power of the bootstrap test.Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.1

H1 Alg_4r=0.85 Alg_4r=0.75
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.42 | 0.5 035 |[0.32 |0.32 |0.58
1.05my | 0.55 | 0.75 | 0.91 0.55 | 0.71 0.8
1.075mp| 0.77 | 0.96 | 099 |0.67 |0.89 |0.92

1.1mg | 0.95 | 0.99 1 0.84 | 097 |0.96
1.15mp | 0.98 | 0.94 | 1 0.97 1 1
1.2my | 1 1 1 1 1 1

Table 5. Power of the bootstrap test.Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.2

H1 Alg_4r=0.85 Alg_4r=0.75
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mq 0.54 | 0.62 | 0.46 | 043 | 043 | 0.65
1.05mp | 0.68 | 0.84 |0.95 | 0.67 | 0.81 0.87

1.075mp| 0.85 | 0.97 |1 0.77 | 094 |0.95
1.1mg [ 097 |0.99 |1 0.9 0.98 | 0.98
1.15mp | 0.99 | 0.97 |1 098 |1 1
1.2mp | 1 1 1 1 1 1

Table 6. Power of the bootstrap test. Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.05

H1 Alg_5r=0.85 Alg_5r=0.75
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.36 | 0.5 038 (029 |04 0.29
1.05my | 0.53 | 0.61 0.65 |044 | 052 | 0.61
1.075mg| 0.7 0.79 | 093 |058 |0.74 |0.83
1.1my (085 |[095 |098 |0.75 |0.84 |0.96
1.15mg | 0.97 | 1 1 092 (099 |1
1.2mg | 1 1 1 098 |1 1

Table 7. Power of the bootstrap test. Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.1
H1 Alg_5r=0.85 Alg_5r=0.75

n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mp| 0.43 | 059 | 046 |0.36 |047 |0.37
1.05mq | 0.61 0.68 | 0.72 | 0.51 0.60 | 0.69
1.075mp| 0.76 | 0.84 | 095 | 0.66 | 0.8 0.88
1.1my [ 089 |0.97 |0.99 | 0.81 0.89 | 0.97
1.15mg | 0.98 | 1 1 094 (099 |1
1.2mg | 1 1 1 099 |1 1

Table 8. Power of the bootstrap test. Source: own calculations.




Results of the simulation analysis H,

The significant level: « = 0.2

H1 Alg_5r=0.85 Alg_5r=0.75
n=30 | n=60 | n=90 | n=30 | n=60 | n=90
1.025mq 0.53 | 0.68 | 0.56 | 047 |0.57 | 047
1.05mq | 0.7 0.76 | 0.8 0.61 0.7 0.78
1.075mq 0.82 | 0.89 |0.97 |0.74 |0.87 |0.92

1.1mg | 0.94 | 0.98 1 0.87 | 093 |0.98
1.15mp | 0.99 1 1 0.97 1 1
1.2my | 1 1 1 1 1 1

Table 9. Power of the bootstrap test. Source: own calculations.




Results of the simulation analysis Hj

Power of the bootstrap test: a = 0.05,n =60

1-B

10F

0.8l
I — Algorithm 3

06 Algorithm 4 r=0.95
[ Algorithm 5 r=0.95

04

0.2]
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Figure 1: Power of the bootstrap test. n = 60, o = 0.05. Source:
Based on Tables 1, 4 and 7.



Results of the simulation analysis H,

Power of the bootstrap test: a = 0.05,n =60

—— Algorithm 4 r=0.85
Algorithm 4 r=0.75

L T I S ' S S B S S ST TSR
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Figure 2: Power of the bootstrap test. n = 60, « = 0.05. Source:
Based on Tables 4.



Results of the simulation analysis Hj

Power of the bootstrap test: a = 0.05, H1 =1.05Hp

1-B
10
0.8
[ —— Algorithm 3
oer Algorithm 4 r=0.95
I Algorithm 5 r=0.95
0.4}
02l
L L L L L L L L L L L L L L L L L L L L L L L L L L L n

40 50 60 70 80 90

Figure 3: Power of the bootstrap test. @ = 0.05. uy = 1.05u0. Source:
Based on Tables 1, 4 and 7.



Conclusions

@ The power of the mean from the simple rarAwdoAm sample
(Ts, ha(y)) is shorter than the powers of (7s, f(x)) and

(s FO)); )
@ The power of (Ts, f(x)) is usually slightly better than
(Ts; f(x));

@ The power of (Ts, f(x)) andn (Tg, f(x)) are close to one in
the cases when the sample sizes are not very large;

@ The strategy (T, f(x)) could be useful only in the case
when the data are distributed according to McKay’s
bivariate gamma distribution;

@ The strategy (T, f(x)) could be applied in the case when
the both variable has continuous distribution. Therefore
this strategy useful in practice;

@ The results could be useful especially in statistical auditing
where we are able to observe large number of auxiliary
variable data.
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