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Continuous sampling design according to Cordy
(1993)

Let the population U ⊂ R. The sample space, denoted by
Sn = Un, is the set of ordered samples denoted by
x = (x1, ..., xn), xk ∈ U, k = 1, ...,n, where xk is the outcome of
the variable observed in the k -th draw. Let x be a value of the
n-dimensional random variable X = (X1, ...,Xn) with the
sampling design density function f (x) = f (x1, ..., xn). Let fi(x)
and fi,j(x , x ′), x ∈ U, x ′ ∈ U, be marginal density functions of Xi
and (Xi ,Xj), respectively, j > i = 1, ...,n. The inclusion func.:

π(x) =
n∑

i=1

fi(x), π(x , x ′) =
n∑

i=1

n∑
j=1,j ̸=i

fi,j(x , x ′), x ∈ U, x ′ ∈ U

(1)
and

∫
U π(x)dx = n,

∫
U

∫
U π(x , x ′)dxdx ′ = n(n − 1).

f (xn, ..., xi , xi−1, ..., x1) = f (x1)
n∏

i=2

f (xi |xi−1, xi−2, ..., x1) (2)



Continuous version of Horvitz-Thompson statistic
The estimated parameter: θ =

∫
U g(x)dx .

TX =
n∑

i=1

g(Xi)

π(Xi)
(3)

Theorem 1. [Cordy (1993)] The statistic TX is an unbiased
estimator for θ, if the function g(x) is either bounded or
non-negative, and π(x) > 0 for each x ∈ U.
Theorem 2 [Cordy (1993)] If the function g(x) is bounded,
π(x) > 0 for each x ∈ U, and

∫
U(1/π(x))dx < ∞, then

V (TX) =

∫
U

g2(x)
π(x)

dy+
∫

U

∫
U

g(x)g(x ′)
π(x , x ′)− π(x)π(x ′)

π(x)π(x ′)
dxdx ′.

Cordy (1993) also proposed the unbiased estimator of this
variance.
Moreover, in the case of simple random sample X̄ = 1

n
∑n

k=1 Xk
is particular case of TX.



Estimation using auxiliary variable

Let h(x , y), (x , y) ∈ U ⊆ R2, be the density function. The
marginal densities are: h1(x) and h2(y).
h(y |x) = h(x , y)/h1(x). µy = E(Y ) =

∫ −∞
−∞ yh2(y)dy ,

µx = E(X ) =
∫ −∞
−∞ xh1(x)dx , E(Y |x) =

∫ −∞
−∞ yh(y |x)dy ,

V (Y |x) =
∫ −∞
−∞ (y − E(Y |x))2h(y |x)dy .

Our purpose is estimation of parameter θ where

θ = µy =

∫ ∞

−∞
g(x)dx =

∫ ∞

−∞

∫ ∞

−∞
yh(y |x)h1(x)dxdy (4)

where:

g(x) = E(Y |x)h1(x) = h1(x)
∫ ∞

−∞
yh(y |x)dy . (5)



Estimation using auxiliary variable

We replace g(X ) = E(Y |X )h1(X ) with Yh1(X ) in the definition
of TX. This leads to the following estimator of µy :

TX,Y =
n∑

i=1

Yih1(Xi)

π(Xi)
(6)

We set:

h(y |x) = h(y1, ..., yn|x1, ..., xn) =
n∏

i=1

h(yi |xi) (7)



Estimation using auxiliary variable
Theorem 3[Wywial (2020)] If E(Y ) < ∞ and π(x) > 0 for all
(x , y) ∈ U and assumption (7) holds, then E (TX,Y) = µy .

Theorem 4[Wywial (2020)] If the function E(Y ) is bounded,
π(y) > 0 for each (x , y) ∈ U, and

∫
U(1/π(y))dy < ∞, then

V (TX,Y) =

∫
U

V (Y |x)h2
1(x)

π(x)
dx +

∫
U

E2(Y |x)h2
1(x)

π(x)
dx + A (8)

where

A =

∫
U

∫
U

E(Y |x)h1(x)E(Y |x ′)h1(x ′)
π(x , x ′)− π(x)π(x ′)

π(x)π(x ′)
dxdx ′

or

A =

∫
U

∫
U

E(Y |x)h1(x)E(Y |x ′)h1(x ′)
π(x , x ′)

π(x)π(x ′)
dxdx ′ − E2(Y ).



Estimation using auxiliary variable
Cox and Snell (1979) conditions

The density function of the sampling design is known:

f (x1, ..., xn) =
n∏

i=1

f (xi), f (xi) =
xih1(xi)

µx
, π(x) = nf (xi). (9)

The estimated density func. of the sampl. design is known:

f̂ (x) = f (x1, ..., xn, θ̂1...θ̂r ) =
n∏

i=1

f̂ (xi), f̂ (x) =
xh1(θ̂1...θ̂r )

x̄
.

(10)
This and equation (6) lead to:

TX,Y = ỸR =
x̄
n

∑
i∈s

Yi

Xi
. (11)



Estimation using auxiliary variable
Cox and Snell (1979) conditions

The uniform kernel estimator of h1(x) leads to the following
estimator of f (x) (Wywial (2020)):

f̃ (x) =
N∑

i=1

wi f̃i(x , xi ,∆), f̃i(x , xi ,∆) =

{
x

2xi∆
, x ∈ [xi −∆; xi +∆],

0, x /∈ [xi −∆; xi +∆],

where ∆ > 0 is the bandwidth parameter and wi =
xi

Nx̄ .

F̃ (x) =
∫ x

−∞
f̃ (t)dt =

N∑
i=1

wi F̃i(x , xi ,∆), (12)

x = F̃−1
i (u) =

√
4xi∆u + (xi −∆)2, z ∈ [0;1] (13)

where u has uniform distribution on interval [0;1]. This let us
easy generate the pseudovalues on interval [xi −∆; xi +∆].



Estimation using auxiliary variable
Sampling scheme. Algorithm A

Purpose: selection of sample xs = [x1, ..., xk , ..., xn] from
dx0 = [x1, ..., xk , ..., xN ];
values of vector x′

s = [x ′
1, ..., x

′
n] are generated by means of

quantile functions x ′ = F̂−1(u), where u is the value of the
uniformly distributed variable on [0;1] and

F̂ (x) =
∫ x

−∞
f̂ (t)dt , f̂ (x) =

xh1(θ̂1...θ̂r )

x̄
(14)

elements of xs are selected from x according to

xk = arg min
j=1,...,N

|xj − x ′
k |. (15)



Estimation using auxiliary variable
Sampling scheme. Algorithm B

In Algorithm I, the function f̂ (x), F̂ (x) is replaced by
f̃ (x),F̃ (x), respectively:

f̃ (x) =
N∑

i=1

wi f̃i(x , xi ,∆), f̃i(x , xi ,∆) =

{
x

2xi∆
, x ∈ [xi −∆; xi +∆],

0, x /∈ [xi −∆; xi +∆],

F̃ (x) =
∫ x

−∞
f̃ (t)dt =

N∑
i=1

wi F̃i(x , xi ,∆), ∆ > 0;

Select xi with probability ∝ wi =
xi

Nx̄ ;

next: x ′
i = F̃−1

i (u) =
√

4xi∆u + (xi −∆)2, u ∈ [0;1]

where u has uniform distribution on interval [0;1];
the elements of xs are selected from dx0 according to

xk = arg min
j=1,...,N

|xj − x ′
k |.



The case of McKay’s bivariate gamma distribution

Let Ui , i = 0,1, have gamma distributions with densities:

li(ui) = li(ui , θi , c) =
cθi

Γ(θi)
uθi−1

i e−cui (16)

The joint distribution of (X ,Y ) where X = U0 + U1, Y = U0 has
density function (see McKay (1934)):

l(x , y) =
cθ0+θ1

Γ(θ0)Γ(θ1)
yθ0−1(x − y)θ1−1e−cx , x > y > 0. (17)



The case of McKay’s bivariate gamma distribution
We estimate µy = θ0

c by means the sampling design:

f (x) =
n∏

i=1

f (xi), f (xi) =
xih1(xi)

µx
=

cθ0+θ1+1

Γ(θ0 + θ1 + 1)
xθ0+θ1

i e−cxi .

In this case (Wywial (2020)):

deff (ŶR) =
V (ŶR)

V (Ȳ )
=

θ1

θ0 + θ1 + 1
< 1.

V (ŶR) can be estimated by means of the following statistics:

Ṽ (ỸR, f̂ (x)) =
1
n

ỸR(x̄ − ỸR)
γ̂2

x

1 + γ̂2
x
. (18)

Bootstrap-type estimators of variance:

Ṽ
(

ỸR

)
=

1
B − 1

B∑
k=1

(
Ỹ (k)

R − ỸR

)2
, Ỹ (k)

R =
x̄
n

n∑
k=1

Y (k)
i

X (k)
i

(19)



Hypothesis and test statistics

H0 : µy = µy0, H1 : µy = µy1 > µy0. (20)

test statistics based on studentized versions of mean value
estimators:

TS =
ȲS − µ0√

VS(Y )

√
n, T̂S =

ỸS − µ0√
V̂ (ỸS)

, T̃S =
ỸS − µ0√

Ṽ (ỸS)
(21)

where VS(Y ) =
∑

i∈S(Yi − ȲS)
2/(n − 1), ȲS =

∑
i∈S Yi/n.



Testing strategies

The pair (testing strategy) (T̂S, f̂ (x)) is based on the
statistic T̂S from sample selected by means of sampling
scheme explained by Algorithm A where the estimator f̂ (x)
of the density function f (x) is used;
The strategy (T̃S, f̃ (x)) is based on the statistic T̃S from
sample selected by mean of sampling scheme explained
by Algorithm B where sampling the kernel estimator f̃ (x) of
the density function f (x) is used;
(TS,h2(y)) is the simple random sample selected from
distribution of variable under study Y which density
function h2(y) is the marginal distribution of (X ,Y )
explained by density: h(x , y).



Bootstr. significant test strategy (T̂S, f̂ (x)). Algorithm 1

dx0 = {x1, ..., xN} observations of an auxiliary variable
distributed according density function h1(x , θ̂1, ..., θ̂r );
1. Sample s = ((x1, y1), ..., (xn, yn)) is selected from dx0
according to Algorithm A;
2. Evaluate test statistic t̂s given by (21);
4. Draw the bootstrap samples of size n denoted by
sj = ((x1, y1)j , ..., (xN , yn)j) from s, j = 1, ...,B ≥ 1000;

5. Calculate t̂sj =
ỹsj −ȳs√
V̂ (Ŷsj )

, j = 1, ...,B, V̂ (Ŷsj ) is given by (18);

6. Evaluate the critical value: t̂s(α) as the sample quantile of
order 1 − α on the basis of sequence

(
t̂sj ≤ t̂sj+1 , j = 1, ...,B

)
;

7. Calculate the empirical p̂-value according to

p̂ = 1
B
∑B

j=1 I (̂tsj ) where I (̂tsj ) =

{
1, if t̂sj ≥ t̂s,
0, if t̂sj < t̂s;



Bootstr. significant test strategy (T̃S, f̃ (x)). Algorithm 2

1. Select sample s according to Algorithm B;
2. Draw the bootstrap samples of size n denoted by
sj = ((x1, y1)j , ..., (xN , yn)j) from s, j = 1, ...,B ≥ 1000;
3. Evaluate statistics: ỹsj according to the expression (11),
j = 1, ...,B;
4. Calculate t̃s according to (21) where Ṽ

(
ỸS

)
is given by (19);

6. Select bootstr. sampl. Sjk of size n from Sj , j , k = 1, ...,B;

7. Evaluate: T̃sj =
Ỹsj −ỹs√
Ṽ (ỸSj

)
, Ṽ (ỸSj ) =

1
B−1

∑B
k=1

(
ỸSjk − ỸSj

)2
,

ỸSj =
x̄
n
∑

i∈Sj

Yi
Xi

, ỸSjk = x̄
n
∑

i∈Sjk

Yi
Xi

;

8. Evaluate the critical value: t̃s(α) as the sample quantile of
order 1 − α on the basis of sequence

(
t̃sj ≤ t̃sj+1 , j = 1, ...,B

)
;

9. Calculate the empirical p̃-value according to

p̃ = 1
B
∑B

j=1 I (̃tsj ) where I (̃tsj ) =

{
1, if t̃sj ≥ t̃s,
0, if t̃sj < t̃s;



Power simulation of (TS,h2(y)). Algorithm 3
Let di = (y1, ...yN) be population when hypot. Hi is true, i = 0,1;
1. Draw the simple random sample: s = (y1, ..., yn) from d0;
2. Evaluate test statistic ts given by (21);
3. Select the bootstrap samples: sj = (y (j)

1 , ..., y (j)
n ) from s;

4. Evaluate tsj =
ȳsj −ȳs√
Vsj (Y )

√
n, j = 1, ...,B;

5. Let ts(α) be the (1 − α) quantile from
(
tsj , j = 1, ...,B

)
;

6. Repeat 1-5 A-times for evaluate critical value:
t̄s(α) = 1

A
∑A

k=1 t(k)s (α);
7. Draw the simple s = (y1, ..., yn) from the set d1;
8. Select the bootstrap samples: sj = (y (j)

1 , ..., y (j)
n ) from s;

10. Evaluate statistics: t ′sj
=

ȳsj −µ0√
Vsj (Y )

√
n, j = 1, ...,B;

11. Asses the power according to β̂ = 1
B
∑B

j=1 I(t ′sj
) where

I(t ′sj
) =

{
1, if t ′sj

≥ t̄s(α),
0, if t ′sj

< t̄s(α).



Power simulation of (T̂S, f̂ (x)). Algorithm 4

1. Generate population data di = ((x1, y1), ..., (xN , yn)), i = 0,1
according to the density h(x , y , θ0, ..., θr );
2. Repeat A-times steps 1-6 of the algorithm 1 in order to
evaluate the mean critical value: ˆ̄t(α) = 1

A
∑A

k=1 t̂k (α);
3. Select sample s = ((x1, y1), ..., (xn, yn)) from d1 according to
Algorithm A;
4. Draw samples sj = ((x1, y1)j , ..., (xN , yn)j) from s, j = 1, ...,B;

5. Calculate t̂sj =
ỹsj −µ0√

V̂ (Ŷsj )
, j = 1, ...,B, V̂ (Ŷsj ) is given by (18);

6. Calculate: β̂ = 1
B
∑B

j=1 I (̂tsj ) where

I (̂tsj ) =

{
1, if t̂sj ≥

ˆ̄t(α),
0, if t̂sj <

ˆ̄t(α).
7. Repeat A-times steps 3-6 and asses the mean power
ˆ̄β = 1

A
∑A

k=1 β̂k .



Power simulation of (T̃S, f̃ (x)). Algorithm 5

1. Generate population data di = ((x1, y1), ..., (xN , yn)), i = 0,1
according to the density h(x , y , θ0, ..., θr );
2. Repeat A-times steps 1-8 of the algorithm 2 in order to
evaluate the mean critical value: ˜̄t(α) = 1

A
∑A

k=1 t̃k (α);
3. Select sample s = ((x1, y1), ..., (xn, yn)) from d1 according to
Algorithm B;
4. Draw samples sj = ((x1, y1)j , ..., (xN , yn)j) from s, j = 1, ...,B;

5. Calculate t̃sj =
ỹsj −µ0√

Ṽ (Ỹsj )
, j = 1, ...,B, Ṽ (Ỹsj ) is given by (19);

6. Calculate: β̃ = 1
B
∑B

j=1 I (̃tsj ) where

I (̃tsj ) =

{
1, if t̃sj ≥

˜̄t(α),
0, if t̃sj <

˜̄t(α).
7. Repeat A-times steps 3-6 and asses the mean power
˜̄β = 1

A
∑A

k=1 β̃k .



Results of the simulation analysis

H0 : µy = µy0 = θ0
c = 10, H1 : µy = µy1 > µy0, r = 0.95.

H
′

0 : µy = µy0 = θ0
c = 20, H1 : µy = µy1 > µy0,

r = 0.75, r = 0.85.



Results of the simulation analysis H0

The significant level: α = 0.05
H1 Alg_3 Alg_4 r=0.95

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.23 0.23 0.27 0.58 0.51 0.68
1.05m0 0.26 0.42 0.44 0.77 0.88 0.97
1.075m0 0.38 0.4 0.62 0.93 0.99 1
1.1m0 0.54 0.66 0.79 0.98 1 1
1.15m0 0.7 0.91 0.97 0.99 1 1
1.2m0 0.9 0.98 1 1 1 1

Table 1. Power of the bootstrap test.Source: own calculations.



Results of the simulation analysis H0

The significant level: α = 0.1
H1 Alg_3 Alg_4 r=0.95

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.32 0.32 0.37 0.67 0.62 0.77
1.05m0 0.35 0.52 0.54 0.84 0.93 0.97
1.075m0 0.48 0.5 0.71 0.96 1 1
1.1m0 0.74 0.75 0.86 0.99 1 1
1.15m0 0.79 0.94 0.99 1 1 1
1.2m0 0.94 0.99 1 1 1 1

Table 2. Power of the bootstrap test.Source: own calculations.



Results of the simulation analysis H0

The significant level: α = 0.2
H1 Alg_3 Alg_4 r=0.95

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.44 0.43 0.49 0.78 0.73 0.86
1.05m0 0.46 0.64 0.66 0.89 0.96 0.99
1.075m0 0.6 0.62 0.81 0.98 1 1
1.1m0 0.75 0.83 0.92 0.99 1 1
1.15m0 0.86 0.97 0.99 1 1 1
1.2m0 0.97 0.99 1 1 1 1

Table 3. Power of the bootstrap test.Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.05
H1 Alg_4 r=0.85 Alg_4 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.32 0.4 0.27 0.24 0.24 0.43
1.05m0 0.43 0.65 0.86 0.46 0.62 0.73
1.075m0 0.69 0.94 0.99 0.57 0.84 0.87
1.1m0 0.92 0.98 1 0.78 0.98 0.93
1.15m0 0.97 1 1 0.93 1 1
1.2m0 1 1 1 1 1 1

Table 4. Power of the bootstrap test.Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.1
H1 Alg_4 r=0.85 Alg_4 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.42 0.5 0.35 0.32 0.32 0.53
1.05m0 0.55 0.75 0.91 0.55 0.71 0.8
1.075m0 0.77 0.96 0.99 0.67 0.89 0.92
1.1m0 0.95 0.99 1 0.84 0.97 0.96
1.15m0 0.98 0.94 1 0.97 1 1
1.2m0 1 1 1 1 1 1

Table 5. Power of the bootstrap test.Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.2
H1 Alg_4 r=0.85 Alg_4 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.54 0.62 0.46 0.43 0.43 0.65
1.05m0 0.68 0.84 0.95 0.67 0.81 0.87
1.075m0 0.85 0.97 1 0.77 0.94 0.95
1.1m0 0.97 0.99 1 0.9 0.98 0.98
1.15m0 0.99 0.97 1 0.98 1 1
1.2m0 1 1 1 1 1 1

Table 6. Power of the bootstrap test. Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.05
H1 Alg_5 r=0.85 Alg_5 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.36 0.5 0.38 0.29 0.4 0.29
1.05m0 0.53 0.61 0.65 0.44 0.52 0.61
1.075m0 0.7 0.79 0.93 0.58 0.74 0.83
1.1m0 0.85 0.95 0.98 0.75 0.84 0.96
1.15m0 0.97 1 1 0.92 0.99 1
1.2m0 1 1 1 0.98 1 1

Table 7. Power of the bootstrap test. Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.1
H1 Alg_5 r=0.85 Alg_5 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.43 0.59 0.46 0.36 0.47 0.37
1.05m0 0.61 0.68 0.72 0.51 0.60 0.69
1.075m0 0.76 0.84 0.95 0.66 0.8 0.88
1.1m0 0.89 0.97 0.99 0.81 0.89 0.97
1.15m0 0.98 1 1 0.94 0.99 1
1.2m0 1 1 1 0.99 1 1

Table 8. Power of the bootstrap test. Source: own calculations.



Results of the simulation analysis H ′

0

The significant level: α = 0.2
H1 Alg_5 r=0.85 Alg_5 r=0.75

n=30 n=60 n=90 n=30 n=60 n=90
1.025m0 0.53 0.68 0.56 0.47 0.57 0.47
1.05m0 0.7 0.76 0.8 0.61 0.7 0.78
1.075m0 0.82 0.89 0.97 0.74 0.87 0.92
1.1m0 0.94 0.98 1 0.87 0.93 0.98
1.15m0 0.99 1 1 0.97 1 1
1.2m0 1 1 1 1 1 1

Table 9. Power of the bootstrap test. Source: own calculations.



Results of the simulation analysis H0
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Algorithm 4 r=0.95

Algorithm 5 r=0.95

Figure 1: Power of the bootstrap test. n = 60, α = 0.05. Source:
Based on Tables 1, 4 and 7.



Results of the simulation analysis H ′
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Figure 2: Power of the bootstrap test. n = 60, α = 0.05. Source:
Based on Tables 4.



Results of the simulation analysis H0
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Power of the bootstrap test : α = 0.05,H1 = 1.05H0

Algorithm 3

Algorithm 4 r=0.95

Algorithm 5 r=0.95

Figure 3: Power of the bootstrap test. α = 0.05. µ1 = 1.05µ0. Source:
Based on Tables 1, 4 and 7.



Conclusions

The power of the mean from the simple random sample
(TS,h2(y)) is shorter than the powers of (T̂S, f̂ (x)) and
(T̃S, f̃ (x));
The power of (T̂S, f̂ (x)) is usually slightly better than
(T̃S, f̃ (x));
The power of (T̂S, f̂ (x)) andn (T̃S, f̃ (x)) are close to one in
the cases when the sample sizes are not very large;
The strategy (T̂S, f̂ (x)) could be useful only in the case
when the data are distributed according to McKay’s
bivariate gamma distribution;
The strategy (T̃S, f̃ (x)) could be applied in the case when
the both variable has continuous distribution. Therefore
this strategy useful in practice;
The results could be useful especially in statistical auditing
where we are able to observe large number of auxiliary
variable data.
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