Bootstrap test based on data collected according to a continuous sampling design

Janusz L. Wywiał, Grzegorz Sitek

Department of Statistics, Econometrics and Mathematics University of Economics in Katowice, Poland, janusz.wywial@ue.katowice.pl; grzegorz.sitek@ue.katowice.pl

The 4th Congress of Polish Statistics, July 2-4, 2024, Warsaw, Poland

Contents:

- Horvitz-Thompson statistic from sample selected according to continuous sampling design
- Inclusion function of sampling design proportional to values of auxiliary variable
- Sampling schemes
- McKay's bivariate gamma distribution
- Algorithms of the hypothesis testing
- Assessing of the test power
- Conclusions

Continuous sampling design according to Cordy (1993)

Let the population $U \subset R$. The sample space, denoted by $\mathbf{S}_n = U^n$, is the set of ordered samples denoted by $\mathbf{x} = (x_1, ..., x_n), x_k \in U, k = 1, ..., n$, where x_k is the outcome of the variable observed in the k-th draw. Let \mathbf{x} be a value of the n-dimensional random variable $\mathbf{X} = (X_1, ..., X_n)$ with the sampling design density function $f(\mathbf{x}) = f(x_1, ..., x_n)$. Let $f_i(x)$ and $f_{i,j}(x, x'), x \in U, x' \in U$, be marginal density functions of X_i and (X_i, X_j) , respectively, j > i = 1, ..., n. The inclusion func.:

$$\pi(x) = \sum_{i=1}^{n} f_i(x), \quad \pi(x, x') = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} f_{i,j}(x, x'), \quad x \in U, x' \in U$$
(1)

and $\int_U \pi(x) dx = n$, $\int_U \int_U \pi(x, x') dx dx' = n(n-1)$.

$$f(x_n,...,x_i,x_{i-1},...,x_1)=f(x_1)\prod_{i=2}^{n}f(x_i|x_{i-1},x_{i-2},...,x_1)$$
 (2)

Continuous version of Horvitz-Thompson statistic

The estimated parameter: $\theta = \int_U g(x) dx$.

$$T_{\mathbf{X}} = \sum_{i=1}^{n} \frac{g(X_i)}{\pi(X_i)} \tag{3}$$

Theorem 1. [Cordy (1993)] The statistic T_X is an unbiased estimator for θ , if the function g(x) is either bounded or non-negative, and $\pi(x) > 0$ for each $x \in U$.

Theorem 2 [Cordy (1993)] If the function g(x) is bounded, $\pi(x) > 0$ for each $x \in U$, and $\int_U (1/\pi(x)) dx < \infty$, then

$$V(T_{\mathbf{X}}) = \int_{U} \frac{g^{2}(x)}{\pi(x)} dy + \int_{U} \int_{U} g(x)g(x') \frac{\pi(x,x') - \pi(x)\pi(x')}{\pi(x)\pi(x')} dx dx'.$$

Cordy (1993) also proposed the unbiased estimator of this variance.

Moreover, in the case of simple random sample $\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$ is particular case of T_X .

Let $h(x,y), (x,y) \in U \subseteq R^2$, be the density function. The marginal densities are: $h_1(x)$ and $h_2(y)$. $h(y|x) = h(x,y)/h_1(x)$. $\mu_y = E(Y) = \int_{-\infty}^{-\infty} y h_2(y) dy$, $\mu_x = E(X) = \int_{-\infty}^{-\infty} x h_1(x) dx$, $E(Y|x) = \int_{-\infty}^{-\infty} y h(y|x) dy$, $V(Y|x) = \int_{-\infty}^{-\infty} (y - E(Y|x))^2 h(y|x) dy$. Our purpose is estimation of parameter θ where

$$\theta = \mu_{y} = \int_{-\infty}^{\infty} g(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y h(y|x) h_{1}(x) dx dy \quad (4)$$

where:

$$g(x) = E(Y|x)h_1(x) = h_1(x) \int_{-\infty}^{\infty} yh(y|x)dy.$$
 (5)

We replace $g(X) = E(Y|X)h_1(X)$ with $Yh_1(X)$ in the definition of T_X . This leads to the following estimator of μ_Y :

$$T_{X,Y} = \sum_{i=1}^{n} \frac{Y_i h_1(X_i)}{\pi(X_i)}$$
 (6)

We set:

$$h(\mathbf{y}|\mathbf{x}) = h(y_1, ..., y_n|x_1, ..., x_n) = \prod_{i=1}^n h(y_i|x_i)$$
 (7)

Theorem 3[Wywial (2020)] If $E(Y) < \infty$ and $\pi(x) > 0$ for all $(x, y) \in U$ and assumption (7) holds, then $E(T_{X,Y}) = \mu_y$.

Theorem 4[Wywial (2020)] If the function E(Y) is bounded, $\pi(y) > 0$ for each $(x, y) \in U$, and $\int_U (1/\pi(y)) dy < \infty$, then

$$V(T_{X,Y}) = \int_{U} \frac{V(Y|x)h_{1}^{2}(x)}{\pi(x)} dx + \int_{U} \frac{E^{2}(Y|x)h_{1}^{2}(x)}{\pi(x)} dx + A \quad (8)$$

where

$$A = \int_{U} \int_{U} E(Y|x)h_{1}(x)E(Y|x')h_{1}(x')\frac{\pi(x,x') - \pi(x)\pi(x')}{\pi(x)\pi(x')}dxdx'$$

or

$$A = \int_{U} \int_{U} E(Y|x) h_{1}(x) E(Y|x') h_{1}(x') \frac{\pi(x,x')}{\pi(x)\pi(x')} dx dx' - E^{2}(Y).$$

Cox and Snell (1979) conditions

The density function of the sampling design is known:

$$f(x_1,...,x_n) = \prod_{i=1}^n f(x_i), \quad f(x_i) = \frac{x_i h_1(x_i)}{\mu_x}, \quad \pi(x) = n f(x_i).$$
 (9)

The estimated density func. of the sampl. design is known:

$$\hat{f}(\mathbf{x}) = f(x_1, ..., x_n, \hat{\theta}_1 ... \hat{\theta}_r) = \prod_{i=1}^n \hat{f}(x_i), \quad \hat{f}(x) = \frac{x h_1(\hat{\theta}_1 ... \hat{\theta}_r)}{\bar{x}}.$$
(10)

This and equation (6) lead to:

$$T_{\mathbf{X},\mathbf{Y}} = \tilde{Y}_R = \frac{\bar{X}}{n} \sum_{i \in S} \frac{Y_i}{X_i}.$$
 (11)

Cox and Snell (1979) conditions

The uniform kernel estimator of $h_1(x)$ leads to the following estimator of f(x) (Wywial (2020)):

$$\tilde{f}(x) = \sum_{i=1}^{N} w_i \tilde{f}_i(x, x_i, \Delta), \quad \tilde{f}_i(x, x_i, \Delta) = \begin{cases} \frac{x}{2x_i \Delta}, & x \in [x_i - \Delta; x_i + \Delta], \\ 0, & x \notin [x_i - \Delta; x_i + \Delta], \end{cases}$$

where $\Delta > 0$ is the bandwidth parameter and $w_i = \frac{x_i}{N\bar{x}}$.

$$\tilde{F}(x) = \int_{-\infty}^{x} \tilde{f}(t)dt = \sum_{i=1}^{N} w_i \tilde{F}_i(x, x_i, \Delta), \tag{12}$$

$$x = \tilde{F}_i^{-1}(u) = \sqrt{4x_i\Delta u + (x_i - \Delta)^2}, \qquad z \in [0; 1]$$
 (13)

where u has uniform distribution on interval [0; 1]. This let us easy generate the pseudovalues on interval $[x_i - \Delta; x_i + \Delta]$.

Sampling scheme. Algorithm A

- Purpose: selection of sample $\mathbf{x}_s = [x_1, ..., x_k, ..., x_n]$ from $\mathbf{d}_{x0} = [x_1, ..., x_k, ..., x_N]$;
- values of vector $\mathbf{x}_s' = [x_1', ..., x_n']$ are generated by means of quantile functions $x' = \hat{F}^{-1}(u)$, where u is the value of the uniformly distributed variable on [0; 1] and

$$\hat{F}(x) = \int_{-\infty}^{x} \hat{f}(t)dt, \quad \hat{f}(x) = \frac{xh_1(\hat{\theta}_1...\hat{\theta}_r)}{\bar{x}}$$
 (14)

elements of x_s are selected from x according to

$$x_k = arg \min_{j=1,...,N} |x_j - x_k'|.$$
 (15)

Sampling scheme. Algorithm B

• In Algorithm I, the function $\hat{f}(x)$, $\hat{F}(x)$ is replaced by $\tilde{f}(x)$, $\tilde{F}(x)$, respectively:

$$\tilde{f}(x) = \sum_{i=1}^{N} w_i \tilde{f}_i(x, x_i, \Delta), \ \tilde{f}_i(x, x_i, \Delta) = \begin{cases} \frac{x}{2x_i \Delta}, \ x \in [x_i - \Delta; x_i + \Delta], \\ 0, \ x \notin [x_i - \Delta; x_i + \Delta], \end{cases}$$

$$\tilde{F}(x) = \int_{-\infty}^{x} \tilde{f}(t)dt = \sum_{i=1}^{N} w_i \tilde{F}_i(x, x_i, \Delta), \quad \Delta > 0;$$

• Select x_i with probability $\propto w_i = \frac{x_i}{N\overline{x}}$;

next:
$$x_i' = \tilde{F}_i^{-1}(u) = \sqrt{4x_i\Delta u + (x_i - \Delta)^2}, \qquad u \in [0; 1]$$

where u has uniform distribution on interval [0; 1];

• the elements of \mathbf{x}_s are selected from \mathbf{d}_{x0} according to

$$x_k = \arg\min_{i=1,\dots,N} |x_i - x_k'|.$$

The case of McKay's bivariate gamma distribution

Let U_i , i = 0, 1, have gamma distributions with densities:

$$I_i(u_i) = I_i(u_i, \theta_i, c) = \frac{c^{\theta_i}}{\Gamma(\theta_i)} u_i^{\theta_i - 1} e^{-cu_i}$$
 (16)

The joint distribution of (X, Y) where $X = U_0 + U_1$, $Y = U_0$ has density function (see McKay (1934)):

$$I(x,y) = \frac{c^{\theta_0 + \theta_1}}{\Gamma(\theta_0)\Gamma(\theta_1)} y^{\theta_0 - 1} (x - y)^{\theta_1 - 1} e^{-cx}, \quad x > y > 0. \quad (17)$$

The case of McKay's bivariate gamma distribution

We estimate $\mu_y = \frac{\theta_0}{c}$ by means the sampling design:

$$f(\mathbf{x}) = \prod_{i=1}^{n} f(x_i), \quad f(x_i) = \frac{x_i h_1(x_i)}{\mu_x} = \frac{c^{\theta_0 + \theta_1 + 1}}{\Gamma(\theta_0 + \theta_1 + 1)} x_i^{\theta_0 + \theta_1} e^{-cx_i}.$$

In this case (Wywial (2020)):

$$deff(\hat{Y}_R) = \frac{V(\hat{Y}_R)}{V(\bar{Y})} = \frac{\theta_1}{\theta_0 + \theta_1 + 1} < 1.$$

 $V(\hat{Y}_R)$ can be estimated by means of the following statistics:

$$\tilde{V}(\tilde{Y}_R, \hat{f}(x)) = \frac{1}{n} \tilde{Y}_R(\bar{x} - \tilde{Y}_R) \frac{\hat{\gamma}_X^2}{1 + \hat{\gamma}_z^2}.$$
 (18)

Bootstrap-type estimators of variance:

$$\tilde{V}\left(\tilde{Y}_{R}\right) = \frac{1}{B-1} \sum_{k=1}^{B} \left(\tilde{Y}_{R}^{(k)} - \tilde{Y}_{R}\right)^{2}, \quad \tilde{Y}_{R}^{(k)} = \frac{\bar{X}}{n} \sum_{k=1}^{n} \frac{Y_{i}^{(k)}}{X_{i}^{(k)}}$$
 (19)

Hypothesis and test statistics

$$H_0: \mu_y = \mu_{y0}, \quad H_1: \mu_y = \mu_{y1} > \mu_{y0}.$$
 (20)

test statistics based on studentized versions of mean value estimators:

$$T_{\mathcal{S}} = \frac{\bar{Y}_{\mathcal{S}} - \mu_0}{\sqrt{V_{\mathcal{S}}(Y)}} \sqrt{n}, \quad \hat{T}_{\mathcal{S}} = \frac{\tilde{Y}_{\mathcal{S}} - \mu_0}{\sqrt{\hat{V}(\tilde{Y}_{\mathcal{S}})}}, \quad \tilde{T}_{\mathcal{S}} = \frac{\tilde{Y}_{\mathcal{S}} - \mu_0}{\sqrt{\tilde{V}(\tilde{Y}_{\mathcal{S}})}}$$
(21)

where
$$V_S(Y) = \sum_{i \in S} (Y_i - \bar{Y}_S)^2 / (n-1)$$
, $\bar{Y}_S = \sum_{i \in S} Y_i / n$.

Testing strategies

- The pair (testing strategy) $(\hat{T}_S, \hat{f}(x))$ is based on the statistic \hat{T}_S from sample selected by means of sampling scheme explained by Algorithm A where the estimator $\hat{f}(x)$ of the density function f(x) is used;
- The strategy $(\tilde{T}_S, \tilde{f}(x))$ is based on the statistic \tilde{T}_S from sample selected by mean of sampling scheme explained by Algorithm B where sampling the kernel estimator $\tilde{f}(x)$ of the density function f(x) is used;
- $(T_S, h_2(y))$ is the simple random sample selected from distribution of variable under study Y which density function $h_2(y)$ is the marginal distribution of (X, Y) explained by density: h(x, y).

Bootstr. significant test strategy $(\hat{T}_S, \hat{f}(x))$. Algorithm 1

 $d_{x0} = \{x_1, ..., x_N\}$ observations of an auxiliary variable distributed according density function $h_1(x, \hat{\theta}_1, ..., \hat{\theta}_r)$;

- 1. Sample $s = ((x_1, y_1), ..., (x_n, y_n))$ is selected from d_{x_0} according to Algorithm A;
- 2. Evaluate test statistic \hat{t}_s given by (21);
- 4. Draw the bootstrap samples of size *n* denoted by

$$s_j = ((x_1, y_1)_j, ..., (x_N, y_n)_j) \text{ from } s, j = 1, ..., B \ge 1000;$$

5. Calculate
$$\hat{t}_{s_j} = \frac{\tilde{y}_{s_j} - \bar{y}_s}{\sqrt{\hat{V}(\hat{Y}_{s_j})}}, j = 1, ..., B, \ \hat{V}(\hat{Y}_{s_j})$$
 is given by (18);

- 6. Evaluate the critical value: $\hat{t}_s(\alpha)$ as the sample quantile of order 1 $-\alpha$ on the basis of sequence $(\hat{t}_{s_j} \leq \hat{t}_{s_{j+1}}, j=1,...,B)$;
- 7. Calculate the empirical \hat{p} -value according to

$$\hat{\rho} = \frac{1}{B} \sum_{j=1}^{B} I(\hat{t}_{s_j}) \text{ where } I(\hat{t}_{s_j}) = \begin{cases} 1, & \text{if} & \hat{t}_{s_j} \ge \hat{t}_s, \\ 0, & \text{if} & \hat{t}_{s_j} < \hat{t}_s; \end{cases}$$

Bootstr. significant test strategy $(\tilde{T}_S, \tilde{f}(x))$. Algorithm 2

- 1. Select sample s according to Algorithm B;
- 2. Draw the bootstrap samples of size *n* denoted by
- $s_j = ((x_1, y_1)_j, ..., (x_N, y_n)_j)$ from $s, j = 1, ..., B \ge 1000$;
- 3. Evaluate statistics: \tilde{y}_{s_i} according to the expression (11), j = 1, ..., B;
- 4. Calculate \tilde{t}_s according to (21) where $\tilde{V}\left(\tilde{Y}_S\right)$ is given by (19);

6. Select bootstr. sampl.
$$S_{jk}$$
 of size n from S_j , j , $k = 1, ..., B$;
7. Evaluate: $\tilde{T}_{s_j} = \frac{\tilde{Y}_{s_j} - \tilde{y}_s}{\sqrt{\tilde{V}(\tilde{Y}_{S_j})}}$, $\tilde{V}(\tilde{Y}_{S_j}) = \frac{1}{B-1} \sum_{k=1}^{B} \left(\tilde{Y}_{S_{jk}} - \tilde{Y}_{S_j}\right)^2$,

$$\tilde{Y}_{S_j} = \frac{\bar{x}}{n} \sum_{i \in S_j} \frac{Y_i}{X_i}, \ \tilde{Y}_{S_{jk}} = \frac{\bar{x}}{n} \sum_{i \in S_{jk}} \frac{Y_i}{X_i};$$

- 8. Evaluate the critical value: $\tilde{t}_s(\alpha)$ as the sample quantile of order $1 - \alpha$ on the basis of sequence $(\tilde{t}_{s_i} \leq \tilde{t}_{s_{i+1}}, j = 1, ..., B)$;
- 9. Calculate the empirical \tilde{p} -value according to

$$\tilde{p} = \frac{1}{B} \sum_{j=1}^{B} I(\tilde{t}_{s_j}) \text{ where } I(\tilde{t}_{s_j}) = \begin{cases} 1, & \text{if } & \tilde{t}_{s_j} \ge \tilde{t}_s, \\ 0, & \text{if } & \tilde{t}_{s_j} < \tilde{t}_s; \end{cases}$$

Power simulation of $(T_S, h_2(y))$. Algorithm 3

Let $d_i = (y_1, ... y_N)$ be population when hypot. H_i is true, i = 0, 1;

- 1. Draw the simple random sample: $s = (y_1, ..., y_n)$ from d_0 ;
- 2. Evaluate test statistic t_s given by (21);
- 3. Select the bootstrap samples: $s_i = (y_1^{(i)}, ..., y_n^{(i)})$ from s;
- 4. Evaluate $t_{s_j} = \frac{y_{s_j} y_s}{\sqrt{V_{s_i}(Y)}} \sqrt{n}, j = 1, ..., B;$
- 5. Let $t_s(\alpha)$ be the (1α) quantile from $(t_{s_i}, j = 1, ..., B)$;
- 6. Repeat 1-5 A-times for evaluate critical value:

$$\bar{t}_{s}(\alpha) = \frac{1}{A} \sum_{k=1}^{A} t_{s}^{(k)}(\alpha);$$

- 7. Draw the simple $s = (y_1, ..., y_n)$ from the set d_1 ;
- 8. Select the bootstrap samples: $s_j = (y_1^{(j)}, ..., y_n^{(j)})$ from s;
- 10. Evaluate statistics: $t_{s_j}' = \frac{y_{s_j} \mu_0}{\sqrt{V_{s_j}(Y)}} \sqrt{n}, j = 1, ..., B;$
- 11. Asses the power according to $\hat{\beta} = \frac{1}{B} \sum_{j=1}^{B} I(t'_{s_j})$ where

$$I(t'_{s_j}) = \begin{cases} 1, & \text{if} \quad t'_{s_j} \geq \overline{t}_s(\alpha), \\ 0, & \text{if} \quad t'_{s_j} < \overline{t}_s(\alpha). \end{cases}$$

Power simulation of $(\hat{T}_S, \hat{f}(x))$. Algorithm 4

- 1. Generate population data $d_i = ((x_1, y_1), ..., (x_N, y_n)), i = 0, 1$ according to the density $h(x, y, \theta_0, ..., \theta_r)$;
- 2. Repeat *A*-times steps 1-6 of the algorithm 1 in order to evaluate the mean critical value: $\hat{t}(\alpha) = \frac{1}{A} \sum_{k=1}^{A} \hat{t}_k(\alpha)$;
- 3. Select sample $s = ((x_1, y_1), ..., (x_n, y_n))$ from d_1 according to Algorithm A;
- 4. Draw samples $s_{j} = ((x_1, y_1)_j, ..., (x_N, y_n)_j)$ from s, j = 1, ..., B;
- 5. Calculate $\hat{t}_{s_j} = \frac{\ddot{y}_{s_j} \mu_0}{\sqrt{\hat{V}(\hat{Y}_{s_j})}}, j = 1, ..., B, \ \hat{V}(\hat{Y}_{s_j})$ is given by (18);
- 6. Calculate: $\hat{\beta} = \frac{1}{B} \sum_{j=1}^{B} I(\hat{t}_{s_j})$ where

$$I(\hat{t}_{s_j}) = \begin{cases} 1, & \hat{t}_{s_j} \geq \hat{t}(\alpha), \\ 0, & \hat{t}_{s_j} < \hat{t}(\alpha). \end{cases}$$

7. Repeat A-times steps 3-6 and asses the mean power $\hat{\beta} = \frac{1}{A} \sum_{k=1}^{A} \hat{\beta}_k$.

Power simulation of $(\tilde{T}_S, \tilde{f}(x))$. Algorithm 5

- 1. Generate population data $d_i = ((x_1, y_1), ..., (x_N, y_n)), i = 0, 1$ according to the density $h(x, y, \theta_0, ..., \theta_r)$;
- 2. Repeat A-times steps 1-8 of the algorithm 2 in order to evaluate the mean critical value: $\tilde{t}(\alpha) = \frac{1}{A} \sum_{k=1}^{A} \tilde{t}_k(\alpha)$;
- 3. Select sample $s = ((x_1, y_1), ..., (x_n, y_n))$ from d_1 according to Algorithm B;
- 4. Draw samples $s_j = ((x_1, y_1)_j, ..., (x_N, y_n)_j)$ from s, j = 1, ..., B;
- 5. Calculate $\tilde{t}_{s_j} = \frac{\tilde{y}_{s_j} \mu_0}{\sqrt{\tilde{V}(\tilde{Y}_{s_j})}}, j = 1, ..., B, \ \tilde{V}(\tilde{Y}_{s_j})$ is given by (19);
- 6. Calculate: $\tilde{\beta} = \frac{1}{B} \sum_{j=1}^{B} I(\tilde{t}_{s_j})$ where

$$I(\tilde{t}_{s_j}) = \begin{cases} 1, & \tilde{t}_{s_j} \ge \overline{\tilde{t}}(\alpha), \\ 0, & \tilde{t}_{s_j} < \overline{\tilde{t}}(\alpha). \end{cases}$$

7. Repeat A-times steps 3-6 and asses the mean power $\tilde{\beta} = \frac{1}{4} \sum_{k=1}^{A} \tilde{\beta}_k$.

$$H_0: \ \mu_y = \mu_{y0} = \frac{\theta_0}{c} = 10, \quad H_1: \ \mu_y = \mu_{y1} > \mu_{y0}, r = 0.95.$$
 $H_0': \ \mu_y = \mu_{y0} = \frac{\theta_0}{c} = 20, \quad H_1: \ \mu_y = \mu_{y1} > \mu_{y0}, r = 0.75, r = 0.85.$

H1	Alg_3			Alg_4 r	Alg_4 r=0.95		
	n=30	n=60	n=90	n=30	n=60	n=90	
1.025m ₀	0.23	0.23	0.27	0.58	0.51	0.68	
1.05m ₀	0.26	0.42	0.44	0.77	0.88	0.97	
1.075m ₀	0.38	0.4	0.62	0.93	0.99	1	
1.1m ₀	0.54	0.66	0.79	0.98	1	1	
1.15m ₀	0.7	0.91	0.97	0.99	1	1	
1.2m ₀	0.9	0.98	1	1	1	1	

Table 1. Power of the bootstrap test. Source: own calculations.

H1	Alg_3			Alg_4 r	g_4 r=0.95		
	n=30	n=60	n=90	n=30	n=60	n=90	
1.025m ₀	0.32	0.32	0.37	0.67	0.62	0.77	
1.05m ₀	0.35	0.52	0.54	0.84	0.93	0.97	
1.075m ₀	0.48	0.5	0.71	0.96	1	1	
1.1m ₀	0.74	0.75	0.86	0.99	1	1	
1.15m ₀	0.79	0.94	0.99	1	1	1	
1.2m ₀	0.94	0.99	1	1	1	1	

Table 2. Power of the bootstrap test. Source: own calculations.

H1	Alg_3			Alg_4 r=0.95		
	n=30	n=60	n=90	n=30	n=60	n=90
1.025m ₀	0.44	0.43	0.49	0.78	0.73	0.86
1.05m ₀	0.46	0.64	0.66	0.89	0.96	0.99
1.075m ₀	0.6	0.62	0.81	0.98	1	1
1.1m ₀	0.75	0.83	0.92	0.99	1	1
1.15m ₀	0.86	0.97	0.99	1	1	1
1.2m ₀	0.97	0.99	1	1	1	1

Table 3. Power of the bootstrap test. Source: own calculations.

H1	Alg_4 r=0.85			Alg_4 r	Alg_4 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90	
1.025m ₀	0.32	0.4	0.27	0.24	0.24	0.43	
1.05m ₀	0.43	0.65	0.86	0.46	0.62	0.73	
1.075m ₀	0.69	0.94	0.99	0.57	0.84	0.87	
1.1m ₀	0.92	0.98	1	0.78	0.98	0.93	
1.15m ₀	0.97	1	1	0.93	1	1	
1.2m ₀	1	1	1	1	1	1	

Table 4. Power of the bootstrap test. Source: own calculations.

H1	Alg_4 r=0.85			Alg_4 r	Alg_4 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90	
1.025m ₀	0.42	0.5	0.35	0.32	0.32	0.53	
1.05m ₀	0.55	0.75	0.91	0.55	0.71	0.8	
1.075m ₀	0.77	0.96	0.99	0.67	0.89	0.92	
1.1m ₀	0.95	0.99	1	0.84	0.97	0.96	
1.15m ₀	0.98	0.94	1	0.97	1	1	
1.2m ₀	1	1	1	1	1	1	

Table 5. Power of the bootstrap test. Source: own calculations.

H1	Alg_4 r=0.85			Alg_4 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90
1.025m ₀	0.54	0.62	0.46	0.43	0.43	0.65
1.05m ₀	0.68	0.84	0.95	0.67	0.81	0.87
1.075m ₀	0.85	0.97	1	0.77	0.94	0.95
1.1m ₀	0.97	0.99	1	0.9	0.98	0.98
1.15m ₀	0.99	0.97	1	0.98	1	1
1.2m ₀	1	1	1	1	1	1

Table 6. Power of the bootstrap test. Source: own calculations.

H1	Alg_5 r=0.85			Alg_5 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90
1.025m ₀	0.36	0.5	0.38	0.29	0.4	0.29
1.05m ₀	0.53	0.61	0.65	0.44	0.52	0.61
1.075m ₀	0.7	0.79	0.93	0.58	0.74	0.83
1.1m ₀	0.85	0.95	0.98	0.75	0.84	0.96
1.15m ₀	0.97	1	1	0.92	0.99	1
1.2m ₀	1	1	1	0.98	1	1

Table 7. Power of the bootstrap test. Source: own calculations.

H1	Alg_5 r=0.85			Alg_5 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90
1.025m ₀	0.43	0.59	0.46	0.36	0.47	0.37
1.05m ₀	0.61	0.68	0.72	0.51	0.60	0.69
1.075m ₀	0.76	0.84	0.95	0.66	0.8	0.88
1.1m ₀	0.89	0.97	0.99	0.81	0.89	0.97
1.15m ₀	0.98	1	1	0.94	0.99	1
1.2m ₀	1	1	1	0.99	1	1

Table 8. Power of the bootstrap test. Source: own calculations.

H1	Alg_5 r=0.85			Alg_5 r	5 r=0.75		
	n=30	n=60	n=90	n=30	n=60	n=90	
1.025m ₀	0.53	0.68	0.56	0.47	0.57	0.47	
1.05m ₀	0.7	0.76	0.8	0.61	0.7	0.78	
1.075m ₀	0.82	0.89	0.97	0.74	0.87	0.92	
1.1m ₀	0.94	0.98	1	0.87	0.93	0.98	
1.15m ₀	0.99	1	1	0.97	1	1	
1.2m ₀	1	1	1	1	1	1	

Table 9. Power of the bootstrap test. Source: own calculations.

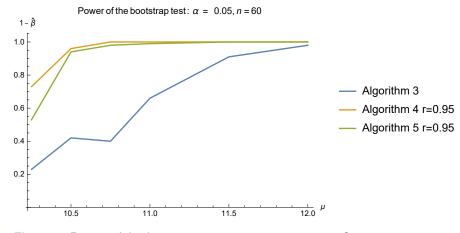


Figure 1: Power of the bootstrap test. n = 60, $\alpha = 0.05$. Source: Based on Tables 1, 4 and 7.

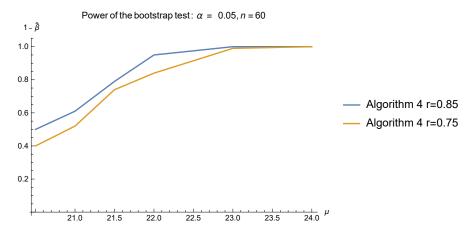


Figure 2: Power of the bootstrap test. n = 60, $\alpha = 0.05$. Source: Based on Tables 4.

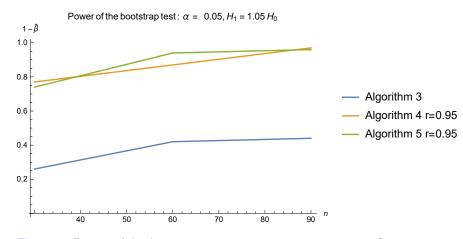


Figure 3: Power of the bootstrap test. $\alpha = 0.05$. $\mu_1 = 1.05\mu_0$. Source: Based on Tables 1, 4 and 7.

Conclusions

- The power of the mean from the simple random sample $(T_S, h_2(y))$ is shorter than the powers of $(\hat{T}_S, \hat{f}(x))$ and $(\tilde{T}_S, \tilde{f}(x))$;
- The power of $(\hat{T}_S, \hat{f}(x))$ is usually slightly better than $(\tilde{T}_S, \tilde{f}(x))$;
- The power of $(\hat{T}_S, \hat{f}(x))$ and $(\tilde{T}_S, \tilde{f}(x))$ are close to one in the cases when the sample sizes are not very large;
- The strategy $(\hat{T}_S, \hat{f}(x))$ could be useful only in the case when the data are distributed according to McKay's bivariate gamma distribution;
- The strategy $(\tilde{T}_S, \tilde{f}(x))$ could be applied in the case when the both variable has continuous distribution. Therefore this strategy useful in practice;
- The results could be useful especially in statistical auditing where we are able to observe large number of auxiliary variable data.

Reference

- Cordy, C. B. (1993). An extension of the Horvitz-Thompson theorem to point sampling from a continuous universe. Statistics and Probability Letters, vol. 18, 353-362.
- Cox D. R., Snell E. J. (1979). On sampling and the estimation of rare errors. *Biometrika*, vol. 66, 1, pp. 125-32.
- Hall P. (1992). Bootstrap and Edgeworth Expansion.
 Springer-Verlag, New York.
- Horvitz D. G., Thompson D.J. (1952). A generalization of the sampling without replacement from finite universe. *Journal of the American Stat. Assoc.*, vol. 47, 663-685.
- Wywiał, J. L. (2020). Estimating the population mean using a continuous sampling design dependent on an auxiliary variable. Statistics in Transition new series, vol. 21, 5, pages: 1-16. DOI: 10.21307/stattrans-2020-052, https://sit.stat.gov.pl/Article/157
- Wywiał J. L. (2021). Sampling designs dependent on sample parameters of auxiliary variables, Second Edition.

Thank you for your attention