

Statistical disclosure control for hypercubes with data from the National Population and Housing Census 2021

Kamil Wilak^{1,2}, Andrzej Młodak^{1,3}, Tomasz Józefowski^{1,2}, Tomasz Klimanek^{1,2}

¹Statistical Office in Poznań ²Poznań University of Economics and Business ³Calisia University

July 2-4, 2024

Outline of the presentation

Introduction

Hypercubes

Cell Key Method

Results

Literature

Introduction

Introduction

- The preparation of data from the National Population and Housing Census conducted in 2021 in the form of hypercubes (specific multi-dimensional tables) not only meets the needs of potential users of statistical data but also meets the requirement to supply the resources of the Statistical Office of the European Union (Eurostat), specified in the relevant legal regulations of the European Commission.
- Due to the significant detail of the information contained in hypercubes developed according to EU assumptions, it was necessary to use the Statistical Disclosure Control (SDC) methods aimed at effectively protecting statistical confidentiality by minimizing the risk of identifying an entity while maximizing the usefulness of the shared data.

- total population persons (103)
- private households (3)
- ► families (3)
- conventional dwellings (2)
- occupied conventional dwellings (7)
- ▶ living quarters (1)

119 hybercubes

Hypercube group 1 "Marital status of people in households"

No	Number of cells	Breakdowns					
1.1	3072	GEO.N.	SEX.	AGE.H.	LMS.H.		
1.2	3840	GEO.N.	SEX.	AGE.H.		HST.H.	
1.3	4608	GEO.N.	SEX.	AGE.H.			FST.H.
1.4	249	GEO.N.	SEX.		LMS.H.	HST.H.	

GEO.N – Place of usual residence SEX – Sex AGE.H – Age LMS.H – Legal marital status HST.H – Household status FST.H – Family status

Hierarchy of the AGE variable

8

Cell Key Method

1. Assign each record a random number (record key – Rkey).

Record	Rkey
1	0,03729499
2	0,15868515
3	0,00846373
4	0,66297515
5	0,83186228
	·
N	0,97542859

2. Create a frequency table. For each cell, sum record keys and take the modulo to get the cell key.

Age \ Sex	Total	Female	Male
Total			
under 15 years			4
15 to 29 years			
30 to 49 years			
50 to 64 years			
65 to 84 years			
85 years and over			

Record		Rkey
	2	0,15868515
	4	0,66297515
	56	0,30777595
	72	0,77265550
Sum Rkey =		1,90209175
Cell key =		0,90209175

3. Set the parameters.

- ▶ D perturbation parameter for maximum noise (scalar integer)
- ▶ V perturbation parameter for variance (scalar double)
- js threshold value for blocking of small frequencies (i.e. the perturbation will not produce positive cell values that are equal to or smaller than the threshold value). (scalar integer)
- ▶ pstay optional parameter to set the probability (0 of an original frequency to remain unperturbed: NA (default) no preset probability (i.e. produces the maximum entropy solution)

4. Use perturbation table to get perturbation value from cell value and cell key (D = 8, V = 3, js = 2, pstay = NA).

Count	Cell key	Noise
4	(0.0000000, 0.08411495)	-4
4	(0.08411495, 0.36322993)	-1
4	(0.36322993, 0.64234490)	0
4	(0.64234490, 0.83157663)	+1
4	(0.83157663, 0.93583431)	+2
4	(0.93583431, 0.98044632)	+3
4	(0.98044632 <i>,</i> 0.99527235)	+4
4	(0.99527235, 0.99909902)	+5
4	(0.99909902, 0.99986613)	+6
4	(0.99986613, 0.99998557)	+7
4	(0.99998557, 1.0000000)	+8

5. Apply the chosen perturbation to the cell.

Age \ Sex	Total	Female	Male
Total			
under 15 years			4 + 2 = 6
15 to 29 years			
30 to 49 years			
50 to 64 years			
65 to 84 years			
85 years and over			

Cell Key Method Properties

Consistency (+)

If a particular cell appears in more than one table, it is always perturbed in the same way.

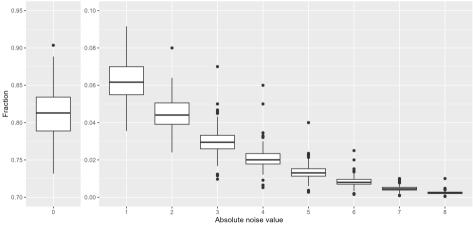
Non-additivity (-)

Since noise is applied independently to inner and marginal aggregates, those often do not add up exactly.

Set of parameters:

D $\in \{8, ?, ?, ?\}$ V $\in \{3, ?\}$ js = 2
pstay $\in \{NA, ?, ?, ?\}$

To discourage attempts of inferring true values, the central parameters (here: noise variance V and noise maximum D) are generally not published.



R packages:

- cellKey: Consistent Perturbation of Statistical Frequency- And Magnitude Tables
- ▶ ptable: Generation of Perturbation Tables for the Cell-Key Method
- sdcHierarchies: Create and (Interactively) Modify Nested Hierarchies

Distribution of absolute noise values

Literature

Literature

- Eurostat (2019). EU legislation on the 2021 population and housing censuses. Explonatory notes. Publications Office of the European Union, Luxemburg.
- Fraser, B. and Wooton, J. (2005). A proposed method for confidentialising tabular output to protect against differencing. In Joint UNECE / Eurostat Work Session on Statistical Data Confidentiality, Geneva, Switzerland, November 9-11.
- Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Naylor, J., Nordholt, E. S., Seri, G., and deWolf, P.-P. (2024). Handbook on Statistical Disclosure Control, Version 2.0. ESSNet.
- Schulte Nordholt, E., Golmajer, M., de Vries, M., de Wolf, P.-P., Tent, R., Giessing, S., van de Laar, R., Krol, N., and Bach, F. (2024). Guidelines for Statistical Disclosure Control methods for census and demographics data. STACE project WP2 Deliverable D2.11.

Thank you for your attention

poznan.stat.gov.pl