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Outline

▶ Pattern definition

▶ L1 norm : support recovery vs separability of signal and noise

▶ SLOPE: FDR control and clustering properties

▶ Pattern recovery for general classifiers in the low dimensional
setup



Penalization by polyhedral gauges

Y = Xβ + ε,

X ∈ Rn×p is a design matrix, ε ∈ Rn is a random noise and
β ∈ Rp is the vector of unknown regression coefficients.

β̂ = Argmin
b∈Rp

1

2
∥y − Xb∥22 + λpen(b), (1)

where pen is a real-valued polyhedral gauge, i.e. a non-negative
and positively homogeneous convex function that vanishes at 0 and
its unit ball is given by a polyhedron.
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Some examples of polyhedral gauges

L1(b) =
∑

i |bi |, L∞ = maxi |bi |
SLOPE(B., van den Berg, Su, Candès, arxiv 2013, AoAS, 2015)
OWL(Zeng and Figuereido, IEEE Signal Process. Lett., 2014)

Jλ(b) =
∑
i

λi |β|(i),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p).

((a)) (2,2,2) ((b)) (2,0,0) ((c)) (3,2,1)



for a convex function ϕ : Rp → R, a vector s ∈ Rp is a subgradient
of ϕ at β ∈ Rp if

ϕ(b) ≥ ϕ(β) + s ′(b − β) ∀b ∈ Rp.

The convex, non-empty set of all subgradients of ϕ at β is called
the subdifferential of ϕ at β, denoted by ∂ϕ(β).
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Pattern definition (Graczyk, Schneider, Skalski, Tardivel,
arxiv 2024)

β and β̃ ∈ Rp have the same pattern with respect to pen if

∂pen(β) = ∂pen(β̃),

Cβ - pattern equivalence class (the set of all elements of Rp

sharing the same pattern as β)

ℓ1-norm: The pattern corresponds to the sign vector

sign(β) = (sign(β1), . . . , sign(βp))′.

SLOPE:
pattslope(β)j = sign(βj) rank(|β|)j

For β = (3.1,−1.2, 0.5, 0, 1.2,−3.1)′,
pattslope(β) = (3,−2, 1, 0, 2,−3)′.
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Pattern recovery under L1 norm: Basis Pursuit

Y = Xn×pβ, p > n

Goal: Identify the sparsest solution

Basis Pursuit (Chen and Donoho, 1994): Estimate β by
minimizing ||b||1 =

∑n
i=1 |bi | subject to Y = Xb.

BP can recover β if it is identifiable with respect to L1 norm, i.e.

If Xγ = Xβ and γ ̸= β then ∥γ∥1 > ∥β∥1.

k = ||β||0 = #{i : βi ̸= 0}
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Transition curve (Donoho and Tanner, 2005)

Let’s assume than p → ∞, n/p → δ > 0 and k/n → ε > 0.

If Xij are iid N(0, τ2) then the probability that BP recovers the
sparsest solution converges to 1 if ε < ρ(δ) and to 0 if ε > ρ(δ),
where ρ(δ) is the transition curve.



Transition curve (2)



Noisy case - multiple regression

Yn×1 = Xn×pβp×1 + zn×1, z ∼ N(0, σI )

Convex program: Minimize ||b||1 subject to ||Y − Xb||22 ≤ ε

Or : minb∈Rp
1
2 ||y − Xb||22 + λ||b||1

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)
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Irrepresentability condition

The sign vector of β is defined as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi ̸= 0}
Irrepresentability condition:

∥X ′XI (X
′
IXI )

−1S(βI )∥∞ ≤ 1

When
∥X ′XI (X

′
IXI )

−1S(βI )∥∞ > 1

then LASSO can not identify the true support in the noisless case
and in the noisy case the probability of the support recovery by
LASSO is smaller than 0.5 (Wainwright, 2009).
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Irrepresentability condition (2)

If p → ∞, n/p → δ then k < pδ
2 log p (1 + o(1))

Corollary: Even in the noiseless case LASSO can not recover the
true support if k

p → ε > 0
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False Discoveries along the lasso path (Su, B. and Candès,
(AoS, 2017))

R :=
∣∣{i : β̂i ̸= 0

}∣∣ ,V :=
∣∣{i : βi = 0, β̂i ̸= 0

}∣∣
FDP :=

V

max{R, 1}
,TPP =

R − V

k
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FDP-Power tradeoff

Theorem (Su, Bogdan, Candes, 2017)

Fix δ ∈ (0,∞) and ε ∈ (0, 1). Then the event⋂
λ≥0.01

{
FDP(λ) ≥ q⋆ (TPP(λ)) − 0.001

}
(2)

holds with probability tending to one.



FDR-Power trade-off (2)
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Thresholded LASSO (1)
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Support recovery by thresholded LASSO

Theorem (Tardivel, B., SJS 2022)

For any λ > 0 LASSO can separate well the causal and null
features if and only if vector β is identifiable with respect to l1
norm and mini∈I |βi | is sufficiently large.

Corollary

Thresholded LASSO can identify sufficiently large signals if
ε < ϕ(δ), where ϕ(·) is the transition curve of Donoho and Tanner
(2005)



Thresholded LASSO (2)
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Thresholded LASSO (3)
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Knockoffs and LCD statistics
Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan,
Janson and Lv (JRSSB, 2017) - augment X with the matrix X̃ of
specifically constructed control variables

Necessary requirement:

ΣX = ΣX̃ and for i ̸= j Cov(Xi , X̃j) = Cov(Xi ,Xj).

When Xij are iid N(0, 1/n) then X̃ij are also iid N(0, 1/n).

β̂(λ) - vector of 2p estimates of regression coefficients by LASSO
applied on the augmented design matrix Xaug = [X , X̃ ]

LCD importance statistics:

Wj = |β̂j | − |β̂p+j |

LSM importance statistics:

Tj = max{λ : |β̂j | > 0}

W̃j = Tj − Tp+j
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Knockoff filter

Define a random threshold as

t̂(λ) = min

{
t > 0 :

1 + #{j : Wj(λ) ≤ −t}
#{j : Wj(λ) ≥ t}

≤ q

}
and select

Ŝ(λ) = {j : Wj(λ) ≥ t̂(λ)},

Foygel-Barber and Candès (2015), Candès, Fan, Janson and Lv
(2017) - The above knockoff procedure KN(λ, q) controls
FDR = E (FDP) at the level q.
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Asymptotic Theory for Knockoffs, (Weinstein, Su, B.,
Barber, Candès, AoS 2023)

k

p
→ ε < 2ε∗(δ/2), (3)

where ε∗(δ) is a point on the Donoho–Tanner transition curve.

Definition
A sequence of random variables Πm is said to be ε-sparse and
growing, if P(Πm ̸= 0) = ε for all m, and
P(|Πm| > M|Πm ̸= 0) → 1 as m → ∞ for every M > 0.

Theorem
For any ε-sparse and growing sequence {Πm}, it holds that for any
fixed 0 < λ1 < λ2 and any ν > 0, there exist m′ and n′(m) s.t.

P
(

inf
λ1≤λ≤λ2

TPP(λ,Πm, q) > 1 − ν

)
≥ 1 − ν

if m ≥ m′ and n ≥ n′(m).



Gain in power over LSM
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Gain in power over LSM
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Polygedral Gauges, Graczyk et al. 2023

Noisless recovery condition (Irrepresentability) for β and X : there
exists such b ∈ lin(Cβ) such that X ′Xb ∈ ∂pen(β), i.e.
X ′X lin(Cβ) ∩ ∂pen(β) ̸= ∅

Accesibility (Identifiability)
Geometric characterization: The pattern of β ∈ Rp is accessible
with respect to X and λpen if and only if

row(X ) ∩ ∂pen(β) ̸= ∅,

i.e. there exists z ∈ Rn such that X ′z ∈ ∂pen(β)

If accessibility is satisfied, for sufficiently large signals the pattern
of the true signal is nested within the pattern of the estimator.
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SLOPE

▶ SLOPE (B., van den Berg, Su, Candès, arxiv 2013, B.,van den
Berg, Sabatti, Su, Candès, AoAS, 2015) penalizes larger
coefficients more stringently

β̂SLOPE = arg min
β∈Rp

1

2
∥y − Xβ∥2 + σ

p∑
j=1

λj |β|(j),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and
|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p).

Theorem (B,van den Berg, Su and Candès (2013))

When XTX = I SLOPE with

λBH
i := σΦ−1

(
1 − i · q

2p

)
controls FDR at the level q p0

p .



Optimality in prediction and estimation

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (Annals of Statistics, 2018):

SLOPE with the BH related sequence of tuning parameters adapts
to the unknown sparsity and attains minimax prediction and
estimation rates k

n log(p/k) for the estimation error ||β̂ − β||2.

Fixed λ LASSO rate of convergence - k
n log(p)

Extension to classification by logistic regression by Abramovich and
Grinshtein (2018, IEEE Trans. Inf. Theory)
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SLOPE pattern (Schneider, Tardivel, JMLR 2022)

Definition
A vector M ∈ Zp is a SLOPE model if either M = 0 or for all
1 ≤ l ≤ ∥M∥∞ there exists j such that |Mj | = l .
Moreover, for b ∈ Rp its SLOPE model mdl(b) is defined in a
following way:

▶ sign(mdl(b)) = sign(b) (sign preservation),

▶ |bi | = |bj ||mdl(b)i | = |mdl(b)j | (clustering preservation),

▶ |bi | > |bj ||mdl(b)i | > |mdl(b)j | (hierarchy preservation).

Example

Let β = (4, 0,−1.5, 1.5,−4). Then mdl(β) = (2, 0,−1, 1,−2).



SLOPE model matrix(1)

Definition
Let m be a model for SLOPE in Rp where ∥m∥∞ = k (the number
of non-null clusters). The matrix Um ∈ Rp×k is defined as follows

∀i ∈ {1, . . . , p}, ∀j ∈ {1, . . . , k}, (Um)ij = sign(mi )1(|mi |=k+1−j).

By convention, when m = 0 we define the null model matrix as
U0 := 0.



Model matrix example

Let p = 8 and m = (3,−3, 2, 1, 2,−1, 0, 3). Here k = 3 and the
model matrix is

Um =



1 0 0
−1 0 0
0 1 0
0 0 1
0 1 0
0 0 −1
0 0 0
1 0 0





Irrepresentability condition for SLOPE (Skalski, B.,
Graczyk, Ko lodziejek, Tardivel, Wilczyński, arxiv 2022)

X̃ = XUM , Λ̃ = (λ̃1, . . . , λ̃k) where λ̃j =

kj∑
i=kj−1+1

λi .

Irrepresentability condition:

JDλ (X ′X̃ (X̃ ′X̃ )−1Λ̃) ≤ 1

where

JDλ (x) := max

{
|x |(1)
λ1

, . . . ,

∑p
i=1 |x |(i)∑p
i=1 λi

}
, where|x |(1) ≥ . . . ≥ |x |(p).



SLOPE vs LASSO (1)
n = 100, p = 200, k = 30, exponentially decaying correlation
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SLOPE vs LASSO (2)
n = 100, p = 200, k = 100, exponentially decaying correlation
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SLOPE vs LASSO (2)
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Low dimensional asymptotics, Hejny, Wallin, B. arxiv 2024

y = Xβ0 + ε

X = (X1, ..,Xn)T , with X1,X2, . . . i.i.d. centered random vectors
in Rp with covariance matrix C and ε ∼ N(0, σ2I ).

β̂n = argmin
β∈Rp

1

2
∥y − Xβ∥22 + fn(β)

f (β) = max{vT1 β, . . . , vTk β} + g(β),

where v1, . . . , vk are the regularizer specific vectors in Rp, and
g(β) is a convex differentiable function.
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Penalty scaling

fn = nγf

γ
0

γ < 1/2

β̂n ∼ OLS

β̂n clusters

γ = 1/2

1/2 < γ < 1

β̂n inconsistent

γ = 1



Asymptotic error distribution

Directional derivative of a function f : Rp → R at a point x in
direction u:

f ′(x ; u) := limε↓0
f (x + εu) − f (x)

ε
.

Theorem
Let f : Rp → R be any convex penalty function and fn = n1/2f .

Assume C is positive definite. Then ûn :=
√
n(β̂n − β0)

d−→ û,
where

û := argminuV (u),

V (u) =
1

2
uTCu − uTW + f ′(β0; u), (4)

with W ∼ N (0, σ2C ), and f ′(β0; u) the directional derivative of f
at β0 in direction u.



Asymptotic error distribution

Directional derivative of a function f : Rp → R at a point x in
direction u:

f ′(x ; u) := limε↓0
f (x + εu) − f (x)

ε
.

Theorem
Let f : Rp → R be any convex penalty function and fn = n1/2f .

Assume C is positive definite. Then ûn :=
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Pattern convergence

Theorem
For every convex set K ⊂ Rp: P[ûn ∈ K] −→ P[û ∈ K] as n → ∞.
In particular, I (ûn) converges weakly to I (û).



Pattern recovery

⟨Uβ0⟩ - pattern space of β0

Theorem
The limiting probability of pattern recovery is given by

P
[
I (β̂n) = I (β0)

]
−→
n→∞

P
[
û ∈ ⟨Uβ0⟩

]
= P

[
ζ ∈ ∂f (β0)

]
,

ζ = C 1/2PC−1/2v0 + C 1/2(I − P)C−1/2W ,

where P is the projection onto C 1/2⟨Uβ0⟩ and v0 is any vector in
∂f (β0). In particular, if W ∼ N (0, σ2C ),

ζ ∼ N (C 1/2PC−1/2v0, σ
2C 1/2(I − P)C 1/2).



Pattern recovery (2)

Irrepresentability condition:

C ⟨Uβ0⟩ ∩ ri(∂f (β0)) ̸= ∅. (5)

Corollary

Assume that fn = αn1/2f0. Then under the irrepresentability
condition

lim
n→∞

P[I (β̂n) = I (β0)] = 1 − o(α),

where o(α) → 0 as α → ∞



Two step procedure

Theorem
Let ξ̂n be a random sequence such that

√
n(ξ̂n − β0)

d−→ W for
some subgaussian random vector W . Let β̂n minimize

Mn(β) :=
1

2
∥ξ̂n − β∥22 + n−1/2f (β),

Then

lim
n→∞

P
[
I (β̂n) = I (β0)

]
≥ 1 − exp(−cα2),

for some c > 0 as α → ∞, provided the irrepresentability condition
is satisfied for C = I. This is especially the case for Lasso or
SLOPE but not for the fused LASSO.



Concavification of Fused Lasso

For C = I, the Fused Lasso

f0(β) = λ

p−1∑
i=1

ai |βi+1 − βi | + λ

p∑
i=1

a|βi | ,

asymptotically recovers all its patterns, i.e;

∀β0 ∈ Rp; lim
n→∞

P[IA(β̂n) = IA(β0)] −→
λ→∞

1,

if and only if (0, a1, . . . , ap−1, 0) forms a strictly concave sequence
and the sparsity penalty a > max{ai + ai+1 : 0 ≤ i ≤ p − 1}.



fn = αn1/2f0

β0 = [0, 0, 1, 0], β0 = [1, 1, 1, 1], β0 = [1, 0, 1, 0]



Asymptotic FDR control

If C = II0 ⊕ Σ, with identity matrix II0 on I0 and an arbitrary
positive definite Σ on I c0 , then

FDR(β̂n) −−−→
n→∞

C0 ≤ q
p0
p
.



Clustering in financial applications

▶ Kremer, Lee, B., Paterlini, Journal of Banking and Finance
110, 105687, 2020 - application for portfolio selection.

▶ Kremer, Brzyski, B., Paterlini, SSRN 3412061, Quantitative
Finance, 2022.



Different flavor of clustering, Kremer et al, 2022

Figuereido and Nowak (2014) - clustering based on correlations
between predictors

Theorem (Kremer, Brzyski, B., Paterlini, 2021)

Let’s assume that columns of X have the same L2 norm and that
the SLOPE solution satisfies β̂1 ≥ . . . ≥ β̂p ≥ 0 (this can always
be achieved by permuting columns of X and changing their signs).
Then, for any i ∈ {1, . . . , p − 1}, it holds

β̂i > β̂i+1 =⇒ XT
i rP − XT

i+1rP ≥ λi − λi+1 ,

where rP := Y −X\i ,i+1β̂\i ,i+1 and X\i ,i+1 and β̂\i ,i+1 are obtained

by removing i th and i + 1st columns of and elements of β̂.
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Portfolio Optimization, (Kremmer et al, 2020, JBF)

Rt×k = (R1, . . . ,Rk) - asset returns,Cov(R) = Σ

min
w∈Rk

w ′Σw + Jλ(w) (6)

s.t.
k∑

i=1

wi = 1 (7)
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SLOPE clustering
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Current research

▶ High dimensional asymptotics for general classifiers

▶ Graphical models - estimating the partial correlation matrix

▶ Development of adaptive (nonconvex) and thresholded
versions with the statistical guarantees [see Jiang, B., Josse,
Majewski, Miasojedow, Rockova, JCGS, 2022]

▶ Efficient implementations for SLOPE - problems with a
non-separable penalty.


