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Aim

® There exist several inferential methods for analyzing functional data in factorial designs.
® There is a lack of statistical tests that are valid:

@ in general designs,

® under non-restrictive assumptions on the data generating process,

© allow for coherent post-hoc analyses.
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Model and hypotheses

Let £2(7T) be the set of all squared integrable functions over closed finite interval T, e.g.,
T =10,1].
e We consider the following FANOVA model given by k € N independent groups of random
processes

Xily -« 5 Xin; NSP(’I?,‘,’}/,') i.i.d. for each i € {1,...,/(}, (1)

which take values in L5(7T).

n= Zf‘zl n; is the total sample size.

The covariance functions of the different groups may differ from each other.

® A more general factorial structure can be incorporated easily by splitting up the indices.
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Model and hypotheses

® Assume that r € N and H € R™*¥ is a known matrix.
® For example, H can be a contrast matrix: H1, = 0,.
o Letn:=(n1,...,7%) .

® \We consider the following hypotheses

Ho:Hn(t) =0, forall t €T vs. Hj:Hn(t)#0, for somet € T. (2)

® This general formulation contains many special cases like the one-way FANOVA problem

of equal mean functions across groups: Ho : n1(t) = --- = nk(t) for all t € T is equivalent
to choosing

H:Pk = |k—Jk/k.
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Model and hypotheses

Dunnett-type contrasts

-1 1 0 0

H= _1 0 1 ' - 0 c R(k—l)xk
10 0 --- 1

Tukey-type contrasts
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Model and hypotheses

® To illustrate that we can also treat higher way layouts we consider a two-way design with
factors A (a levels) and B (b levels).

® We set k := ab and split up the group index i in two subindices

(i, i) € {1,...,a} x {1,...,b}.

® We can test the following hypotheses:
® K& Han(t) =0, for all t € T with Ha := P, ® (1] /b) (no main effect of A),
* HE :Hpn(t) =0, for all t € T with Hg := (1] /a) ® P, (no main effect of B),
® KB Hapn(t) = 0, for all t € T with Hag := P, ® P}, (no interaction effect).

® Here, ® denotes the Kronecker product.
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® An unbiased estimator for the mean function is given by

1
== x;(t)
n;«
J=1

and for the covariance function by

qi(t,s) = (t)) (xig(s) = 7i(s)) (3)

forall t,s e T,ie{1,..., k}.
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® |et ’ﬁ = (7/7\17 - ,ﬁk)—r.
® Fort,sc T, let

e . n _ n _
£(t,5) = ding (LA (8:5), oo (1) )

be an estimator for

1 1
X(t,s) := diag <'yl(t,s), ooy —k(ty s)> € Rk¥k,
1 Tk
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Globalizing point-wise Hotelling's T?-test statistic

* The point-wise Hotelling’s T2-test statistic:
TF (1) == n(Ha(£) T (HE(t, )HT)* (H7(t)) (4)

for all t € T, where AT denotes the Moore-Penrose inverse of the matrix A.

Under the null hypothesis, we expect that the point-wise Hotelling’s T>-test statistic is
small since H7(t) is an estimator for Hn(t).

The term HE(t, t)HT approximates the covariance matrix of v/AH7(t).
The globalizing point-wise Hotelling’s T2-test (GPH) statistic:

To(H) = /{ITF,,’H(t) dt.

® We reject the null hypothesis for large values of T,(H).
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Globalizing point-wise Hotelling's T?-test statistic

® |nvariance under Orthogonal Transformations: Multiplying the left and right side of the
null hypothesis in (2) with an orthogonal matrix P € R"*" leads to the same testing
problem. The point-wise test statistic is invariant under orthogonal transformations, i.e.,
TFppu(t) = TF,u(t).

® Scale-invariance: We have the scaled functional data xu(t) = h(t)x;j(t). Then, Hp :
Hn"(t) = 0,, where n"(t) := h(t)n(t). We have the scale-invariance of the point-wise
Hotelling's T>-test statistic TF/ n(t) =TF,u(t).

Let z ~ GP,(0,,HEHT). Under appropriate assumptions and the null hypothesis in (2), we
have
—>/ YHE(t, )HT ) 2(¢) dt as n — oo, (5)

where < denotes convergence in distribution in the sense of van der Vaart and Wellner (1996).

) = = = A
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Parametric bootstrap

e First, we estimate v1,...,7k by 71, ..., Y.
® Second, we generate parametric bootstrap samples via

x5, ... ,x,%, ~ GP(0,7;), foreachie{l,..., k}.

® Using a Gaussian process for generating the parametric bootstrap sample seems natural
regarding the limiting distribution in Theorem 1 since the mean function estimators are
asymptotically Gaussian anyway.

® Moreover, using the estimators of sample covariance functions, we mimic the covariance
structure of the given functional data.
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Parametric bootstrap

® The parametric bootstrap point-wise Hotelling’s T2-test statistic at t is defined by
9\ [(ae? o
TF? () = n (H" (1)) (HZ (t, t)HT> HA? (£).
® The parametric bootstrap globalizing point-wise Hotelling's T>-test statistic:

TY(H) = [TTF27H(t) dt. (6)

Let z ~ GP,(0,,HXH"). Under appropriate assumptions, it holds that

TP(H) £ /TZT(t)(HZ(t, HHT)*2(8) dt as n — oo, (7)

where here and throughout 9", denotes conditional convergence in distribution given the data
(Xi1, X2, -+ )ie{1,... .k} -
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Parametric bootstrap

® Let € (0,1) be the significance level and B € N sufficiently large.
@ Calculate 71, ..., 9% in (3).
@ Simulate B times n independent Gaussian processes X7.,, ..., X, ~ GP(0,7;), i € {1, ..., k},
be{l,..B}.
© Compute the parametric bootstrap GPH statistic T,7,(H) as in (6) for all b € {1,..., B}.
@ Determine the empirical (1 — a)-quantile Q7 of the computed values.

nl—a

@ Reject the null hypothesis in (2) if and only if T,(H) > QY

nl—a-
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General multiple tests

e We interpret H as follows:
T
H=|h/,....h ]
for matrices hy € R1%, where ¢ € {1,...,r}.
® The main idea of multiple tests is to split up the global null hypothesis in (2) with H =
[h{,...,h]]T into r single tests with hypothesis matrices hy, ... h,.
[ J

This leads to the multiple testing problem
Hoye: hm(t)=0 forallt €T, forle{l,...,r}. (8)

® This general formulation of the multiple testing problem covers the post-hoc testing prob-
lem.
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General multiple tests

® \We adopt the idea for the construction of simultaneous confidence bands proposed by
Biihlmann (1998) Sieve bootstrap for smoothing in nonstationary time series, Annals of
Statistics.

® Let T,}’?(hg), e T,,B’T(hg) denote B parametric bootstrap counterparts of the GPH statis-
tic based on hy, ¢ € {1,...,r}.

® For each b € {1,..., B}, the same bootstrap sample is used for T,?’?(hl), e T,?’?(h,).
® Let qZﬁ denote the empirical (1 — 8)-quantile of Ta™'(hy), ..., T2 (hy).
® Let

= 1 B-1 1 & . b P
B.—max{BG{O,B,...,B} | Bbz::ll{ﬂée{l,...,r}. T, (hz)>qe,g}§oz

be the largest 8 € {0,1/B,...,(B — 1)/B} such that the approximated family-wise type |
error rate (FWER) is bounded by the significance level a.
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General multiple tests

® Foreach £ € {1,...,r}, we reject Ho if and only if T,(h;) > qg)g (0/0 :=1).
® We reject the global null hypothesis g whenever at least one of Ho 1, ..., Ho , is rejected,
ie.,
Ta(h
max ng) ) > 1.
e{1,...,r} qZ,E
® Each test statistic Th(hy),¢ € {1,...,r}, is treated in the same way and has the same

impact since we use the same (3 for each linear combination.

The definition of E ensures that the level of significance for the global test and the FWER
for the multiple testing problem is controlled asymptotically.

e Simultaneous asymptotic confidence regions for the linear combinations hin, ..., h,n are
CRy = {€ € £a(T) | n(Hi(z) — &(8))T(HE(e, )HT ) (HA(t) — £(1)) < a5} £ € (L 7).
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Simulation studies

® \We take into account the type | error control and power of the new and competing statistical
tests.

e Since multiple tests for functional data are not tackled in the literature up until now, we
compared our multiple test (mGPH) with the following global tests by using the Bonferroni
correction:

® the Fmax- and GPF-test by Smaga and Zhang (2019, Technometrics) with nonparametric
bootstrap approach,

® the bootstrap L2-norm-based (L2b) and F-type (Fb) test by Zhang (2013),

® the projection test (CAFB) by Cuesta-Albertos and Febrero-Bande (2010, Test),

® the parametric bootstrap globalizing point-wise Hotelling's T2-test (GPH) for the global testing
problem.

® The Bonferroni correction is used since it is directly related to the construction of confidence
regions in contrast to a stepwise procedure as, e.g., the Holm correction.
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Simulation studies

® The simulation setup is based on the simulations in Paparoditis and Sapatinas (2016)

Bootstrap-based testing of equality of mean functions or equality of covariance operators
for functional data, Biometrika.

® We simulated k = 4 samples with sample sizes (n1, n2, n3, ng) = K - (15, 20, 25, 30), where
K € {1,2,4}, by

1
vii(t) = h(t)A; Z <\/75|n(7rqt) Yiiqg + \/;cos(wqt)Z,-jq> , teT=][0,1].

® Yig, Zijg,j €{1,...,ni},i € {1,2,3,4},q € {1,...,10} are generated independently using
standardized normal, ts- and x2-distributed random variables.
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Simulation studies

® The factors A; are determined by:
@ 1 for the homoscedastic case,
® )\, = 0.75+ 0.25/ for a positive pairing (i.e., the variability increases with sample size),
© )\ =2 —0.25/ for a negative pairing (i.s., the variability decreases with sample size)
for all i € {1,2,3,4}.
e A scaling function h is multiplied, where
® hH(t) =1 for all t € [0,1] for a scenario without scaling function,
@ h(t)=1/(t+1/J) for all t € [0, 1] for a scenario with scaling function.
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Simulation studies - empirical FWER

Tukey contrasts — homoscedastic case
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Simulation studies - empirical power

Tukey contrasts — homoscedastic case

3
S 7 —_— [ [—— e —
- [ ] —— [ ]
T B l | I I E : l
I s S ‘ — ‘ :
§ 3 J ! ' T ' !
' R — ' T
g 24 R — _— ! } R —
=4
£ =
o -
T T T T T T T
Fmax GPF L2b Fb CAFB GPH mGPH
Tukey contrasts — positive pairing
§ -
g 81
g =3
3 8
g
L] e T
5 | | | |
E o4 | ‘ | | ]
R — R —
o
T T T T T T T
Fmax GPF L2b Fb CAFB GPH mGPH
Tukey contrasts — negative pairing
s
S
= I — — B —
£ 87 , —_— i '
% ‘ ] : \ — ‘ :
s g 4 C—————— : ' ' '
3 ) ' L
S I—l il | ——— i '
g o | ] '
e =2
=3
5§ & 1 ; - ; j
R — R —
o
T T T T T T T
Fmax GPF L2b Fb CAFB GPH mGPH

General tests for functional da



Simulation studies - empirical power

Tukey contrasts — homoscedastic case
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Data example - Chlorine Concentration

® Chen, Keogh, Hu, Begum, Bagnall, Mueen, Batista, The UCR time series classification
archive, 2015 www.cs.ucr.edu/~eamonn/time_series_data/.

® The data set was produced by the simulation tool EPANET, which models the hydraulic
and water quality behavior of water distribution piping systems, allowing for the tracking of
water levels and pressures in tanks, water flow in pipes, and the concentration of chemical
species throughout a given network over a simulated period of time. Here, simulated
Chlorine concentration levels were measured at 166 pipe junctions over a period of 15 days.

® The final data set contains functional observations measured in 166 design time points
(pipe junctions).

® |t is divided into three classes (groups). We consider three samples of 25 functional obser-
vations each taken from the groups in the training data set.
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Data example - Chlorine Concentration
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Data example - Chlorine Concentration

® Homoscedastic case

Hypothesis | Fmax GPF L2b  Fb CAFB GPH mGPH
Hor:m=m | 129 48 135 162 78 15 1.7
Hoo:m =ns | 1000  90.0 100.0 100.0 1000 831 534
Hos:m=mn3 | 906 372 312 351 736 381 287

FWER 495 495 635 515 420 4.80 5.35

Empirical powers Ho,1 70.20 66.10 40.70 35.00 54.30 6595 67.10
Hop 2690 16.65 1025 7.60 1750 1590 17.35

Ho3 30.10 26.95 2855 25.10 21.00 27.65 28.75
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Data example - Electrocardiogram

® Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (2000)
PhysioBank, PhysioToolkit, and PhysioNet, Circulation.

e |t is a 20-hour long electrocardiogram (ECG) obtained from Physionet.

® The data set underwent pre-processing consisting of two steps. Firstly, each heartbeat
was extracted from the ECG and, secondly, the heartbeat lengths were adjusted using
interpolation.

® The patient has severe congestive heart failure (pol. ciezka zastoinowa niewydolnos¢ serca)
and annotation was used to obtain class values.

® Groups: (1) Normal, (2) R-on-T Premature Ventricular Contraction, (3) Premature Ven-
tricular Contraction, (4) Supraventricular premature or ectopic beat

® There are four samples of functional data measured in 141 design time points.

® The sample sizes are equal to 292, 177, 10, and 19 respectively.
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Data example - Electrocardiogram

ECG

Normal

R—on—T Premature Ventricular Contraction
Premature Ventricular Contraction
Supraventricular Premature
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Data example - Electrocardiogram

® Heteroscedastic case

Hypothesis | Fmax GPF  L2b Fb CAFB  GPH mGPH
Ho1:m = m 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hoo 11 =13 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hos : 11 = 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hoa: 10 =13 0.0 0.0 18 39.0 0.0 5.4 3.8

Hos : 12 = 14 0.0 0.0 1.2 3.0 4.9 7.2 4.9

Hoe : 13 = 1 0.0 7.8 3.0 4.8 00 150 9.6

FWER 5750 3580 690 340 520 3.75 545
Empirical Hox 100.00 100.00 100.00 100.00 100.00 100.00 100.00
powers Hoo 100.00 100.00 100.00 99.65 100.00 99.30  99.90
Hos 100.00 100.00 100.00 99.60 100.00 100.00 100.00

Hoa 100.00 100.00 85.00 4505 97.25 5530  65.75

Ho.s 93.90 89.60 71.15 60.00 69.20 55.60 62.15

Hoe 99.85 5750 76.25 53.55 9650 40.85 49.45
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multiFANOVA package in R

¢ Ditzhaus M., Munko M., Pauly M., Smaga t., Zhang J.-T. (2023). multiFANOVA: Multiple
Contrast Tests for Functional Data. R package version 0.1.0, https://CRAN.R-project.
org/package=multiFANQOVA.

® multiFANQVA (
X,
gr_label,
h,
n_boot = 1000,
alpha = 0.05,
parallel = FALSE,
n_cores = NULL
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Thank you for your attention!
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